

ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 5, pp. 239–260. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © I.B. Bourdonov, A.S. Kossatchev, V.V. Kuliamin, 2007, published in Programmirovanie, 2007, Vol. 33, No. 5.

239

1. INTRODUCTION

In the broadest sense, the correctness of a system is
defined as its conformance to the requirements. Such a
conformance will be called real. To verify the conform-
ance using formal methods, the objects and relation-
ships of the real world are mapped to model mathemat-
ical objects and relations. The model of the system
under examination is called its implementation, the
model of the requirements is called the specification,
and the conformance is mapped to the model conform-
ance. The model conformance is interpreted as an ordi-
nary mathematical relation, that is, as a subset of the
Cartesian product of the sets of implementations and
specifications.

The verification of conformance is based on the
assumption that the model is “correct.” This enables us
to assume that the real and the model conformances are
equivalent: a system conforms to the requirements if
and only if its implementation considered as a model of
the system conforms to the specification considered as
a model of the requirements. Certainly, this assertion is
tautological in the sense that if we wanted to give a for-
mal definition of the model correctness, it would be
reduced to the equivalence of the real and the model
conformances. Thus, the verification of conformance
would verify exactly the same thing that is must
assume. To break this vicious circle, we must under-
stand the nature of modeling.

Modeling of the requirements is the process of their
refinement and formalization. Although the result is a
formal description of the requirements (the specifica-
tion), the very process can hardly be formalized
because it establishes a relationship between the
objects of different nature—informal and formal ones.
Only intuition can decide whether or not the informal
requirements are correctly written in the form of a for-
mal specification. If the intuition lets us down, it can
lead (and often does) to the detection of phantom errors
in the system under examination. Then, the model of
the requirements must be revised; i.e., an error should
be found in the specification rather than in the system
itself. After the specification has been revised, the veri-
fication of conformance must be repeated.

Modeling the conformance relation has the same
nature: this is a refinement and formalization of the
intuitive understanding of the claim that the “system
conforms to the requirements.” Formalization also
assumes that we abstract ourselves from the details of
the system, the requirements, and their relationships
that are immaterial from the viewpoint of the system
correctness interpreted intuitively.

To be able to verify the conformance, we must be
given the specifications and the conformance relation in
some formal form. If the implementation considered as
a model of the system is also available, then the static
analytical verification is possible. Such a verification is

Formalization of Test Experiments

I. B. Bourdonov, A. S. Kossatchev, and V. V. Kuliamin

Institute for System Programming, Russian Academy of Sciences,
Bol’shaya Kommunisticheskaya ul. 25, Moscow, 109004 Russia

e-mail: igor@ispras.ru, kos@ispras.ru, kuliamin@ispras.ru

Received February 20, 2007

Abstract

—Formal methods for testing conformance of the system under examination to its specification are
examined. The operational interaction semantics is specified by a special testing machine that formally deter-
mines the testing capabilities. A set of theoretically powerful and practically important capabilities is distin-
guished that can be reduced to the observation of external actions and refusals (the absence of external actions).
The novelties are as follows. (1) Parameterization of the semantics by the families of observable and not observ-
able refusals, which makes it possible to take into account various constraints on the (correct) interactions.
(2) Destruction as a forbidden action, which is possible but should not be performed in the case of a correct
interaction. (3) Modeling of the divergence by the

∆

-action, which also should be avoided in the case of a cor-
rect interaction. On the basis of this semantics, the concept of safe testing, the implementation safety hypothe-
sis, and the safe conformance relation are proposed. The safe conformance relation corresponds to the principle
of independent observations: a behavior of an implementation is correct or incorrect independently of its other
possible behaviors. For a more narrow class of interactions, another version of the semantics based on the ready
traces may be used along with the corresponding conformance relation. Some propositions concerning the rela-
tionships between the conformance relations under various semantics are formulated. The completion transfor-
mation that solves the problem of the conformance relation reflexivity and a monotone transformation that
solves the monotonicity problem (preservation of the conformance under composition) are defined.

DOI:

10.1134/S0361768807050015

240

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 5

2007

BOURDONOV et al.

reduced to checking if the pair <implementation, spec-
ification> belongs to the admissible set of such pairs
defined by the model conformance relation.

In contrast to the requirements and the real conform-
ance, the system under examination is usually an ordi-
nary software and (or) hardware system, which can be
interpreted quite formally at a certain level of abstrac-
tion. Thus, a mapping of the system to its implementa-
tion relates two formal objects, which theoretically
enables one to define (and perform) this mapping for-
mally. Sometimes, such a mapping is actually possible
and is used in practice. However, the system and its
implementation are usually described at very different
levels of abstraction; this makes it practically impossi-
ble to perform the analysis and the formal transforma-
tion into the implementation for complex systems.
When constructing the model, we abstract ourselves
from the greater part of the details of the system orga-
nization and its behavior and distinguish between
important and unimportant details from the viewpoint
of the given specification and the model conformance.
When the model is constructed informally or half for-
mally, we obtain one more source of phantom errors.
For this reason, one often has to abandon the system
analysis and acknowledge that no implementation is
available and, at best, we know only a

class of possible
implementations

. Moreover, it often happens in prac-
tice that the system cannot be formally analyzed at all.
For example, these are remote systems that can be only
accessed through a communication channel, or pro-
grams whose source code is unavailable (formally, the
machine code can be analyzed, but it is rarely possible
in practice), or hardware considered as a black box.

Here, we face the question: how the conformance
can be verified if the implementation is unavailable?
This is possible only if the requirements for the system
are represented in terms of its interaction with the envi-
ronment. Then, it becomes possible to perform testing
(dynamic verification) as an experimental verification
of conformance. A test replaces the environment and
observes the system behavior while interacting with it.
By practical considerations, the test must terminate in a
finite time, which is not necessarily the case for the
arbitrary environment. For this reason, a set of tests is
used to simulate an arbitrary behavior of the environ-
ment; theoretically, such a set may be infinite. Cer-
tainly, in practice only finite test suites are used; such a
testing is complete (that is, it correctly determines the
conformance or inconformance) only under certain
constraints on the system being tested. These con-
straints represented in the model form refine the class of
possible implementations; they are called

implementa-
tion hypotheses

 or

error models

 if they reduce to listing
the errors (types of inconformances) that can be and
cannot be encountered in the system.

Now, we naturally face the problem of formalizing
the testing process. For this purpose, we must first
assume that a model of the system (its implementation)

exists (even when it is not known). This is the so-called

test hypothesis

 [1]. Furthermore, we must formalize the
interaction and simulate real tests by model tests. In the
model, the formal relation

an implementation passes a
suite of (model) tests

 is defined. A suite of model tests
is said to be

complete

 for the given specification if it sat-
isfies the following condition: an implementation con-
forms to the specification if and only if this implemen-
tation passes the given suite of tests. In the model
world, we first must

prove

 the existence of a complete
suite of tests for each specification (at least, for each
specification in the given class of specifications) and a
certain class of possible implementations. Second, we
must find a method for

test generation

.

For practical purposes, we must determine a proce-
dure for

translating

 the model tests into real tests. Here,
we face the situation that is converse of the situation of
modeling the system or the requirements: we do not
determine a model of a real object but rather construct
a real object using its model. Then, the complete suite
of real tests (that is, the tests that are obtained by trans-
lating the complete suite of model tests) is performed
on the system under examination. In real world, the
relation

the system passes the suite of (real) tests

 is also
defined. Finally, we conclude that the system conforms
to the requirements if and only if it passes the complete
suite of real tests. It is clear that this conclusion is based
on the assumption that not only the requirements and
the conformance relation are modeled correctly but also
the translation of the tests and the mapping of the real
relation to the model one are

performed

 correctly.

Below, we assume that the test model and the trans-
lation are correct. We rather focus on the model world
while keeping in mind the real world, which is the
source of all the practical restrictions that must be taken
into account.

Formalization of the interaction is the key point in
conformance testing. The conformance relation and the
admissible classes of implementations and specifica-
tions directly depend on the kind of interactions that is
examined. We define the operational semantics of the
interaction using the so-called testing machine. The
interaction of an implementation with the environment
always satisfies some constraints. Of concern to us are
only the interactions that are admissible in practice.
This depends, first, on the operational situation in
which the interaction occurs and, second, on the
requirements for the environment. The former means
that the environment

cannot

 and the latter means that
the environment

must not

 interact with the implementa-
tion in an arbitrary way. In other words, some interac-
tions do not occur, and some other interactions are of no
concern to us because we verify the correctness of the
implementation but not its environment. Details of the
operational situation and the requirements apart, we
describe the constraints on the interaction using an
appropriate testing machine. Such a machine deter-
mines the abstraction level and the constraints on the

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 5

2007

FORMALIZATION OF TEST EXPERIMENTS 241

interactions under which the conformance relation is
formulated in terms of such an interaction. From the
viewpoint of testing, the machine determines the avail-
able capabilities for controlling the interaction and for
observing the implementation behavior. In other words,
the conformance relations that are of concern to us are
the relations that can be verified using the testing capa-
bilities provided by the testing machine; moreover, the
conformance relations of interest are such that all the
available testing capabilities are necessary for the veri-
fication (there are no redundant capabilities).

We will analyze the testing capabilities from three
viewpoints:

(1) what do

we want

 to verify;
(2) what

can be theoretically

 verified using the
available testing capabilities (the testing power);

(3) which testing capabilities and under which con-
ditions

can we count on in practice

.
Let us consider the first viewpoint in some detail.

It directly determines the type of the conformance rela-
tions of interest under the given testing capabilities.
The case in point is which behaviors of the implemen-
tation are considered correct by the specification and
which are not. We assume that the implementation sat-
isfies the principle of independence: any behavior of the
implementation in a certain situation is either correct or
incorrect independently of its other behaviors. In this
case, we may assume that, in each situation

t

, the spec-
ification determines a set of

admissible

 behaviors

Σ

p

(

t

).
If the implementation has the set of behaviors

I

(

t

), then
the conformance is a preorder (a transitive reflective
relation); therefore, we have

I

(

t

)

⊆

Σ

p

(

t

). For each
observable behavior of the implementation

i

∈

I

(

t

), we
must verify that

i

∈

Σ

p

(

t

). Such a behavior is observed
in a single test run; therefore, we may conclude after the
test run has completed whether it

passed

 or

failed

.
An implementation passes a test if any run of this test
leads to the verdict

pass

 (the test never fails). An imple-
mentation is said to pass a suite of tests if it passes each
test in the suite.

Thus, we do not consider the conformances that
cannot be verified by analyzing every behavior individ-
ually but require an analysis of the set of observable
behaviors. In particular, we do not consider the con-
formances that require that some behaviors are present
in the implementation. If a specification requires a set
of

mandatory

 behaviors

Σ

r

(

t

) in the situation

t

, then the
conformance requires the reverse inclusion

I

(

t

)

⊇

Σ

r

(

t

).
The verification of such a conformance requires that the
entire set of the observable behaviors

I

(

t

) be analyzed
and that, for each

s

∈

Σ

r

(

t

), the inclusion

s

∈

I

(

t

) be ver-
ified. Equivalences provide an example of such con-
formances: each admissible behavior must be present in
the implementation; i.e.,

Σ

r

(

t

) =

Σ

p

(

t

). For such kind of
conformances, it is insufficient to make a conclusion
after each test run: the conformance predicate is not a
conjunction of the verdicts returned at the end of each
test run (if we assume that

pass

 =

true

 and

fail

 =

false

).

We consider two known testing machines proposed
by Milner in [2] and by van Glabbeek in [3, 4] with var-
ious modifications. Simultaneously, we define a
machine with a constrained control, which provides the
minimal testing capabilities that are available in a
greater part of practical cases. The other testing capa-
bilities are either redundant (they enable us to verify
something that does not need to be verified), or are not
theoretically studied, or are impractical.

As an example, we will use a particular case of inter-
actions that is reduced to the exchange of discrete por-
tions of information (messages) between the imple-
mentation and the environment. Such systems are
called input–output systems (see [5–7]). The messages
that are sent from the environment to the system are
called

inputs

, and the messages sent from the system to
the environment are called

outputs

. Using the notation
of the calculus of communicating systems (CCS) [8, 9],
we denote the inputs by ?

m

 and the outputs by !

m

,
where

m

 is the message symbol.

2. IMPLEMENTATION AS A MODEL
OF THE SYSTEM BEING TESTED

Our purpose is to formalize the interaction of the
implementation with the environment. Therefore, the
internal structure of the implementation is of no inter-
est. We are only interested in its external interface that
makes it possible to apply test actions and observe its
external behavior (that is, the behavior that manifests
itself in the interactions). In accordance with this
approach, the testing machine can be thought of as a
black box with the implementation being tested inside.
This box is equipped with various devices for perform-
ing test actions and for observing the external behavior
of the implementation. These actions and observations
are performed by the machine operator whose behavior
simulates the behavior of the environment. A test may
be interpreted as a variant of the behavior of the envi-
ronment; therefore, we may assume that the operator’s
behavior is determined by the test. The difference
between the test and the corresponding environment is
that the test is succeeded by the verdict

pass

 or

fail

.

For the illustration purposes, we will use the model
of the system and of its environment that is called the
labeled transition system (LTS). This is a directed
graph with a distinguished initial vertex in which the
arcs are labeled by certain symbols. Formally, LTS is
the collection

S

 =

LTS

(

V

S

,

L

,

E

S

,

s

0

), where

V

S

 is a non-
empty set of states (graph vertices),

L

 is the alphabet of
symbols called external actions,

τ

 is the symbol called
the internal action,

E

S

⊆

V

S

×

 (

L

∪

 {

τ}) × VS is the set of
transitions (labeled arcs), and s0 ∈ VS is the initial state
(the initial vertex of the graph). The transition from the
state s to the state s' under the action z is denoted by

s s'. Introduce the notation s =def s' s s'.
Note that different LTSs can be indistinguishable from

z z ∃ z

242

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

the viewpoint of testing if they demonstrate the same
external behavior under any interaction.

The external behavior is considered as a sequence of
discrete external actions such that the operator can
observe the system’s response to these actions. The
alphabet L of the external actions is specified for the
machine. One may assume that the external action z ∈ L is
a notation for the set of actions of the machine that are
observed by the operator as z; i.e., all these actions are
indistinguishable from the operator’s viewpoint. How-
ever, the execution in the same situation of one or
another action that are perceived as z from outside does
not mean that the results of performing these actions are
also indistinguishable. We also note that fixing the
alphabet L does not imply that the system under test
cannot execute some other actions that can be observed
from outside. We just are not interested in these actions
and do not include them into L for this reason. For
example, when testing the methods of an object that
evaluate numerical functions, we may not be interested
in the other methods defined in the object’s class. In the
LTS model with the alphabet L, the execution of the
external action z ∈ L is associated with the transition

s s'. Being in the state s, the LTS performs this
transition, which is observed by the operator as the exe-
cution of the action z, and goes to the state s'. The states
s and s' are not observable.

In addition to the external observable actions, the
machine may have some internal activity that is not
observable externally (in the interactions). It is denoted
by τ. The internal activity can be finite (when it termi-
nates in a certain time) or infinite. The infinite internal
activity is called divergence. Without loss of generality,
we can assume that the τ-activity is a sequence of dis-
crete τ-actions (naturally, also internal and unobserv-
able). Thus, τ denotes the set of all internal actions that
are not observed by the operator and, therefore, are
indistinguishable for him. The finite τ-activity is a finite
sequence of τ-actions and the infinite activity is an infi-
nite sequence of such actions. In the LTS model, the
performance of the τ-action is associated with the tran-

sition s s'.

We assume that the execution time of any external or
τ-action is finite and bounded below by a nonzero
value. Then, the execution of any finite sequence of
actions takes a finite time, while the execution of any
infinite sequence of actions (in particular, any diver-
gence) takes an infinite time.

Interaction always assumes that both parts—the
implementation and the environment—are involved.
For example, in the input–output systems, sending a
message implies that the environment sends an input
and the implementation receives it or the implementa-
tion sends an output and the environment receives it.
Sometimes, the implementation is said to initiate an
output and, when it is sent, the environment must
receive it. In other cases, this is formulated in another

z

τ

way: the implementation cannot reject the input sent by
the environment. This can be considered as a constraint
imposed on the admissible behavior of the environment
or the implementation. In general, such constraints do
not violate the general principle of the reciprocity of
interactions.

As applied to the testing machine, this principle
means that the machine can execute only the actions
that are defined in the implementation and are allowed
by the operator. In the LTS implementation, the action
z is defined if the current state s contains at least one tran-

sition s s'. The test action assumes that the operator
specifies which actions are enabled. The τ-actions, which
do not take part in the interaction, are always enabled.
The permission to execute external actions can also be
interpreted such that the operator instructs the machine
to perform one action at its choice. For example, the
environment receives all the outputs, but the implemen-
tation decides which output is sent.

Although only defined and enabled actions can be
performed, not all such actions are generally execut-
able. The executability of the action z is a predicate on
the set of defined actions and the set of enabled actions.
This predicate may be different at different time
instants (at different states of the LTS implementation)
and for different actions (for different transitions in the
LTS implementation). Thus, there may be priorities for
performing actions in the machine. In this paper, we
usually consider only the machines without priorities:
every defined and enabled action is executable.

The rule of nondeterminstic choice. If there are
several executable actions, only one of them is actually
executed; this action is chosen nondeterministically.
This is the reason of the possible system nondetermin-
ism: we abstract ourselves from the factors (“weather
conditions”) that determine the choice of one or another
action. Note that even when all the executable actions
are labeled by the same symbol (z ∈ L or τ), they may
be different; in particular, they may have different
observable consequences. In the LTS implementation,

this implies that there may be several transitions s s'
defined for the same current state s; these transitions
differ only by there final state s'.

For a machine without priorities, the choice of the
action to be performed is modeled in the LTS using the
composition operator that is borrowed from an algebra
of processes. It is convenient for us to use the composi-
tion operator from the calculus of communicating sys-
tems (CCS) [8, 9]. For this purpose, an involution (a
bijection that is inverse of itself) is defined on the set of
external actions. It is denoted by the underscore. This
involution assigns to each external action z a reverse
action z such that z = z. Note that z ∈ L does not neces-
sarily imply z ∈ L. The result of the composition of two
LTSs S = LTS(VS, L, ES, s0) and T = LTS(VT, M, ET, t0) is
a third LTS S T = LTS(VS × VT, L M, E, s0t0).
Its states are the pairs of the states of the LTS operands,

z

z

↑↓ ↑↓

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 243

and the initial state is the pair of the initial states. The
alphabet of the composition consists of the actions
belonging to one of the LTS operands for which there
are no inverse actions in the alphabet of the other LTS
operand: L M = (L\M) ∪ (M\L). The transitions in
the composition are classified as synchronous and
asynchronous. An asynchronous transition corresponds
to a transition in one of the LTS operands that is labeled
by a symbol in the composition alphabet or by τ. Only
the state of this LTS operand can be changed. A syn-
chronous transition corresponds to a pair of transitions
in the LTS operands corresponding to mutually inverse
actions that becomes a τ-transition in the composition.
In this case, the states of both LTS operands can be
changed. Formally, the set of composition transitions E
is the least set generated by the following inference
rules:

l ∈ (L\M) ∪ {τ} &s s' �st s't,

m ∈ (M\L) ∪ {τ} &t t ' � st st ',

z ∈ L ∩ M &s s' &t t ' � st s't '.

If the operator in a machine with the LTS implemen-
tation S enables the action z ∈ L, then this fact corre-

sponds to the transition t t ' in the LTS test T. If the
operator can change its mind and enable another set of
external actions without waiting for the external action to
be performed, then this fact corresponds to the τ-transi-

tion t t ' in the LTS test T. It is usually assumed that
the system <implementation–test> is closed during
testing; i.e., the implementation and the test interact
only with each other and do not interact with the rest of
the external world. In this case, M = L and L M = ∅;
i.e., the composition S T includes only τ-transitions
(inherited from the operands or synchronous transi-
tions).

Note that, in practice, a real test (more precisely, a
tester that performs the test) can interact with the sys-
tem being tested via a certain communication environ-
ment rather than directly. A standard example is the
environment consisting of a queue of inputs and a
queue of outputs in input–output systems. In addition,
the system under test can interact not only with the test
and (or) communication environment but also with
another part of the environment. For example, we can
be unable to intercept all the external interactions of the
system. In this case, we have to assume that, in the
model world, the composition of the implementation
with the communication environment and with another
part of the environment is tested. In this case, it is said
that the implementation is embedded in a test context,
and the testing is said to be asynchronous or testing in
the context. In fact, the very conformance relation is
changed in this case. The tester can also receive com-
mands from above (change the testing mode or abnor-
mally terminate the process). In the model world, this
can be interpreted as the replacement of the test by the

↑↓

l l

m m

z z τ

z

τ

↑↓
↑↓

composition of this test with a “higher authority.”
Below, we assume that the system <implementation–
test> is closed.

3. CONTROL AND OBSERVATION
OF EXTERNAL ACTIONS

In terms of the testing machine, a test action reduces
to the specification of the set of enabled external
actions. The way used to specify this set depends on the
machine organization.

The van Glabbeek machine is called generative:
each external action z ∈ L is assigned a switch that has
two states—free (the action is enabled) and blocked
(the action is disabled). Any switch may be set to any
state. The set of switches in the state free is the set of
enabled actions P ⊆ L.

The Milner machine is called reactive. It works by
orders: for each external action z ∈ L, there is a button;
when this button is pressed, only the action z is enabled
to be executed. This imposes a restriction on the opera-
tion of the environment: in the LTS model of the test T,

not more than one transition t t ' is allowed, where
z ∈ L ∩ M. The absence of transitions means that at the
moment (at the current state of the test) the operator
does not press any buttons. Upon the execution of an
external action, the machine stops until the next button
is pressed.

We also define the testing machine with restricted
control, which will also be called the parameterized
machine. As the reactive machine, it operates by orders;
however, when a button is pressed, a set of external
actions P ⊆ L is enabled. Such a button is denoted by
“P.” It is assumed that each external action z ∈ L is
enabled at least by one button; that is, there exists a but-
ton “P” such that z ∈ P. This machine is called a
machine with restricted control because not every set
P ⊆ L is associated with a corresponding button “P.”
The machine is parameterized by a set of buttons, that
is, by a family of subsets of the external actions � ⊆ �(L).
A pressed button is automatically released when the
machine executes an external action or the operator
presses another button.

Let us compare the three machines described above.
A parameterized machine can be interpreted as a mod-
ification of a generative machine in which not every
state of the switches is allowed. If a reactive machine is
modified by allowing several buttons to be pressed
simultaneously, such a machine will operate as a gener-
ative machine. Taking into account these modifications,
all the three machines can be considered equivalent
with a single exception.

This exception is the behavior of the machine after
an external action is executed and before another button
is pressed or the states of the switches are changed. The
reactive machine stops until the same or other buttons
are pressed. The generative machine continues to oper-
ate by executing internal actions and the external

z

244

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

actions enabled by the switches in the free state. In the
parameterized machine, one more variant is imple-
mented: the machine continues to operate but only the
internal actions can be executed (the button is not
pressed). Let us discuss how the behavior of one
machine can be simulated by another machine.

Van Glabbeek showed that the stop of a reactive
machine can be simulated in a generative machine by a
special on/off switch that blocks the execution not only
of all the external but also internal actions. To imitate
such a behavior, the operator must press the blocking
switch immediately after observing an external action
and remove the block after setting the main switches.
Note that the operator imitates the environment that can
be very quick or very slow. Therefore, the imitation of
the behavior of a reactive machine does not actually add
anything and leaves the behavior inherent in generative
machines. It is clear that the on/off switch does not
increase the power of testing.

Conversely, the behavior of a generative machine
when at least one external action is enabled is simulated
in the reactive machine by a sequence of presses of one
and the same set of buttons. Van Glabbeek proposed to
simulate the ban of all the external actions (all the
switches are in the blocked state) in a reactive machine
by pressing the button of a special odd action that is
never executed. This odd action is added to the alphabet
L and the corresponding button is added to the machine.

It is sufficient to show how the behavior of the gen-
erative machine can be simulated in a parameterized
machine and conversely. The behavior of the generative
machine is simulated in a parameterized machine by
quickly pressing the same button after the correspond-
ing external action is executed. Note that it does not
matter if the operator fails to press the button suffi-
ciently quickly because the machine (without priori-
ties) has only time to execute one or several τ-actions,
which it also can execute if the button is pressed imme-
diately. In other words, we require that the operator is
able to work quickly but do not make him work quickly.
This is in accordance with the requirement that the
operator must be able to simulate arbitrary rate of the
environment operation.

To simulate the behavior of a parameterized
machine in a generative machine, a modification of the
generative machine mentioned by van Glabbeek can be
used. In this modification, the switches are automati-
cally set to the blocked state each time an external
action is executed. This exactly corresponds to the
property of the parameterized machine requiring that
only τ-actions may be executed between the execution
of an external action and pressing a new button.

In the generative and parameterized machines, there
is a display used to observe the external actions. When
the machine executes the external action z, the symbol
z is shown on the display. In the parameterized
machine, the display is cleared when the next button is
pressed. Since the generative machine operates contin-

uously, it is possible to observe the sequence 〈z, z, z, …〉
without changing the states of the switches. To enable
the operator to differentiate between different execu-
tions of the same action, the display must die away for
a short period of time t0 between two successive
actions. There is no display in the reactive machines,
but the button corresponding to the action being exe-
cuted sinks, the machine stops, and, in order to continue
testing, the operator must relieve this button, and then
press the same or another button (or several buttons in
the modified machine). Obviously, these differences are
insignificant.

Summing up, note two important points (for defi-
niteness, we use the terminology of the parameterized
machine).

Toggling without observation. In a machine with-
out priorities, the possibility to execute τ-actions is
independent of the set of the enabled external actions
(the states of the buttons and the switches). Therefore,
it is senseless to press buttons without observation: this
does not increase the power of testing. Indeed, if the
button “P” was pressed and then another button “Q”
was pressed without observing the effect of the first but-
ton, the machine could execute only τ-actions in this
interval of time. However, the same τ-actions could be
executed if the button “Q” was pressed once without
pressing “P.” Thus, any behavior (the trace of external
actions) that can be observed in the first case can also
be observed in the second case.

In the presence of priorities, toggling without obser-
vation is necessary for the completeness of testing
because different sets of enabled actions differently
affect the execution of τ-actions, which results in the
behaviors that look differently from outside.

Testing log. To accumulate information about test-
ing, the operator could write down the sequence of his
actions and observations. Such a sequence of pressed
buttons and observed external actions will be called the
testing log; its subsequence consisting of the observed
external actions will be called the observation trace or
simply the trace. In the general case, everything we can
learn from testing is reduced to the set of all possible
testing logs. In the presence of priorities, traces are not
sufficient, and one has to use logs.

However, in a machine without priorities, the possi-
bility to execute an external action does not depend on
which other external actions are enabled. If the action
z ∈ P was observed after the button “P” was pressed, it
also could be observed after pressing any other button
“Q” such that z ∈ Q. Therefore, the set of all testing
logs can be unambiguously reconstructed from the set
of observation traces. Such a set of traces will be called
the trace model of the implementation or simply the
trace implementation. In the LTS model I, a trace is
defined as a sequence of external actions that label the
transitions in an LTS route that begins at the initial state
(the τ-actions are omitted in this sequence). LTS imple-
mentations are distinguishable in the interaction only

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 245

accurate to their trace model I = traces(I). Therefore, a
specification can be considered as a description of the
requirements for the set of implementation traces. For
the conformance type used in this paper, the specifica-
tion determines the set of admissible traces that must
include all the traces of any conformal implementation.
The specification itself can be described as the set of
traces of the corresponding LTS Σ = traces(S). This set
will be called the trace model of the specification or
simply the trace specification. It is assumed that the
trace specification unambiguously determines the set of
admissible traces, although it may be not identical to
this set, which will be seen later.

The trace model (both the model of implementation
and the model of specification) is a (prefix-closed) tree,
which means that if a trace is observed (enabled), then
its any prefix is also observed (enabled). Therefore, the
testing may proceed up to the first error: if, upon the
observation of an admissible trace σ, an external action
z is observed and the trace σ · 〈z〉 is not admissible, then
the testing may be finished with the verdict fail. Indeed,
any continuation σ · 〈z〉 · λ is also not admissible. More-
over, we will see later that the continuation of testing in
this situation can be unsafe.

4. MACHINE STOP AND OBSERVATION
OF REFUSALS

When there are no executable actions, the machine
stops. If the operator can detect this fact, he gets a new
kind of observations: the machine in the state in which
no actions can be executed and the enabled actions
form the set P. This set P is called the refusal set. From
now on, we will include in the testing logs and the
observation traces not only the actions from the alpha-
bet L but also the observable refusal sets as subsets of
the set of actions P ⊆ L.

A machine without priorities can stop only if there
is no internal activity. An LTS implementation stops at

the state s when there are no τ-transitions s ; such
a state is called stable (quiescent). A refusal P can also
be observed in a quiescent state s such that ∀z ∈ P

s . The rule observation without toggling is cor-
rected accordingly: not only external actions but also
refusal sets are considered to be observations. The pos-
sibility to reconstruct testing logs from traces with
refusals also remains open because the refusal set P can
be observed only when the button “P” is pressed.
To obtain traces with refusals (failure traces) from an
LTS implementation, it is sufficient to add the refusal
sets to the alphabet of external actions of the LTS, add
loop transitions corresponding to the observable refus-
als in each quiescent state, and take the set of traces of
external actions of the resulting LTS: I = Ftraces(I).

To observe refusals, there is a green light in the gen-
erative and reactive machines that is on when the
machine executes some external or internal action; the
light goes out when the machine stops. In a generative

τ

z

machine, the refusal set is calculated as the set of
actions written on the switches having the state free; in
a reactive machine, this set is calculated as the set of
actions written on the buttons pressed by the operator.
There is another mode of operation of the green light.
In this mode, it is on only when an internal action is
executed. If the green light goes out, this is either a stop
or the execution of an external action. In a reactive
machine, the stop is detected if no buttons are selected.
In a generative machine, the stop is detected if the dis-
play is blank for a time t > t0; this is required to make
certain that this is a stop rather than an interval between
the execution of two external actions.

Although both modes of operation of the green light
can be used to detect the stop, they differ by the power
of testing. The second mode makes it possible to sepa-
rately observe the internal activity (a nonempty
sequence of internal actions) when the green light is on
and the display is blank. Note that the internal actions
are indistinguishable; in particular a single τ-action and
any finite sequence of τ-actions cannot be distin-
guished. If we denote the observation of the internal
activity by τ, then the traces 〈z, τ, z'〉 and 〈z, z'〉 are dis-
tinguishable, and the traces 〈z, τ, P〉 and 〈z, P〉, where z,
z' ∈ L and P ⊆ L, are also distinguishable, although they
are indistinguishable in the first mode. The practical
efficiency of this possibility depends on the conditions
of the interaction. For example, when a program is run
on a local computer and does not respond for a long
time, we can look if it uses the processor or modifies
some variables or files. On the other hand, if the pro-
gram is intended for remote interaction, there is no such
possibility when the testing is remote. However, a more
important question is if we really need such a testing
possibility. It is difficult to imagine a situation when the
presence or absence of the internal activity between an
external action (or the start of the program) and the next
external action or refusal must be interpreted as an
error.

To detect the stop, it is not necessary to be able to
observe the (internal) activity of the implementation.
For example, assume that the time of performing any
external action and any finite sequence of internal
actions is bounded above by a known quantity t1. Then,
when the timeout t > t1 expires in the absence of exter-
nal actions, we may conclude that there is either the
divergence or the stop. If we are sure that there is no
divergence, then this is the stop. In the input–output
systems, such a timeout can be established by receiving
all the outputs without sending any inputs. The corre-
sponding refusal set is called the quiescence; it is
denoted by δ [7, 10]. In the LTS implementation, such
a refusal is observed in the quiescent state in which
there are no output transitions. If sending the input ?x
assumes a reliable (error-free and, therefore, not requir-
ing testing) delivery notification that must arrive not
later than in certain known time and there is no diver-
gence, we can observe the input refusal {?x}. In an LTS
implementation, the input refusal {?x} can be observed

246

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

in a quiescent state in which there are no transitions
labeled by ?x. Note that the expiration of the timeout in
itself does not make it possible to distinguish between
the divergence and the machine stop. One can observe
the stop only if there is no divergence. This problem
will be discussed below.

There is another possibility. An implementation
may inform the machine from within the black box not
only about the execution of an external action but also
about the stop. For example, in order to observe a qui-
escent state, one also can use a reliable output absence
notification instead of the timeout expiration. To observe
the input refusal, one can use the reliable nondelivery
notification along with the delivery notification instead
of the timeout expiration.

In a parameterized machine, we propose to abstract
ourselves from the method used for stop detection.
We assume that, if the stop can be detected when the
button “P” is pressed, then this is done by the machine
itself: it outputs the special symbol θ on the display.
In the LTS test, θ must be added to the alphabet, and the
capability of defining θ-transitions must be provided.
In a composition, the θ-transition is executable if and
only if no other transitions can be executed. In a
machine without priorities, this requirement is formu-
lated by the following additional inference rule:

Deadlock &t t ' � st st ', where

Deadlock =def s &t

&∀z ∈ L ∩ M (s ∨t).

For a closed <implementation–test> system, we have
M = L and L M = ∅. Therefore, when the implemen-

tation stops at the state s, any refusal P ⊆ {z ∈ L |s }
is possible. In the machine that is parameterized by the
family �, it also must hold that P ∈ �.

Now, let us refine the parameterization of the
machine taking refusals into account. We assume that
some refusals can be observed when the machine is at
stop and the others can not. For example, in the input–
output systems, we can have a timeout for outputs but
no delivery or nondelivery notification of the input. In
this case, the quiescent state is observed, but the input
refusal is not observed. Such input–output systems are
considered, for example, for the conformance relations
iot, ioconf, ior, and ioco, which will be considered
below.

Thus, the family of buttons is subdivided into two sub-
families: the buttons with observable refusals � ⊆ �(L),
and the buttons with unobservable refusals � ⊆ �(L);
together, they cover the entire alphabet: (∪(�)) ∪
(∪(�)) = L. We assume that � ∩ � = ∅ because, if
there is the button “P” with the observable refusal, the
addition of the button “P” with the unobservable refusal
does not enhance the power of testing. The machine
parameterized by the families � and � will be called

θ τ

τ τ

z z

↑↓
z

the �/�-machine; we say that this machine determines
the �/� – interaction semantics. The traces with refus-
als in � will be called �-traces, and the set of such LTS
traces will be called the �-model.

The �(L)-model is also called the F-model. For an
implementation, its F-model is the set of observation
traces on the �(L)/∅-machine, which will be called the
F-machine. For the F-model T, the subset of its
�-traces is and �-model (!),1 which will be denoted by
T� = T ∩ (L ∪ �)*. The converse is also true: any
� − model is a subset of the �-traces of an F-model (!).
In what follows, we will interpret the implementation
and specification as F-models and denote them by I and
Σ, respectively. Given LTS models, the corresponding
F-models are constructed by taking all the traces with
refusals: I = Ftraces(I) and Σ = Ftraces(S). Below, we
will discuss how the set of admissible traces can be
determined from Σ.

Note that neither van Glabbeek nor Milner consid-
ered such variants of their machines. In their consider-
ations, either there is a green light and all the refusals
are observable, or there is no green light and all the
refusals are not observable. The set of observable traces
is either the F-model (all the subsets of the alphabet are
observable refusals) or the ∅/{L}-model (there are no
observable refusals and the traces contain only external
actions).

5. INTERACTION PROTOCOL
AND SAFE TESTING

The machine stop can sometimes lead to a deadlock
in the interaction. For definiteness, we will consider the
�/�-machine. In the following two cases, there is no
deadlock.

(1) The environment can continue working without
waiting if the result of the last interaction step is an
external action, a refusal, or the last step does not termi-
nate at all. The operator presses a button when there are
no observations. There is a τ-transition in the state of
the LTS environment/test.

(2) At stop, there is an observable refusal, and the
environment responses to it. The operator observes the
refusal and then presses (another) button. The state of
the LTS environment/test is quiescent and there is a
θ-transition defined in it.

A deadlock is a normal completion of the interaction
if this situation coincides with the completion of the
environment operation. The operator does not and will
not press any buttons: all the external actions are dis-
abled, there will be no observations. The LTS environ-
ment (test) is in a terminal state (without transitions).
The testing completes with the verdict pass or fail.

1 The symbol (!) denotes that the proof of the corresponding propo-
sition is omitted due to space limitations.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 247

A deadlock in a nonterminal state is considered to
be an interaction error: the LTS environment or test
“wants” a continuation, but it is impossible. Note that,
in this case, some button is pressed. Such an error can
be caused by the implementation or by the environ-
ment. Assume that the implementation is not to
“blame.” Then, if the refusal is observable, then the
fault of the environment is that it does not response
although it could do that. If the refusal is not observ-
able, then the fault of the environment is that it allowed
this situation to happen: the operator must not have
pressed the button “P” if the refusal P is not observable
and can occur in this situation. If all the actions of the
environment are correct but an interaction error does
occur, then the implementation is to “blame:” the
pressed button does not make it possible to observe the
refusal and the implementation stops. However, the
problem is that the interaction errors cannot be found
by testing by definition: the possibility to detect such an
error would mean that the refusal is observable.

If pressing the button “P” after the trace σ cannot
cause an interaction error (an unobservable refusal),
such a button is said to be safe in the implementation
after the trace σ. This means that, in the F-model of the
implementation I, the trace σ ∈ I� is not continued by
the refusal P if P ∈ � (in the LTS implementation, the
trace σ does not terminate in a quiescent state in which
there are no transitions corresponding to the actions
belonging to P):

P safe in I after σ =def P ∈ � ∨ σ · 〈P〉 ∉ I.

The interaction protocol is a rule that determines
which �-buttons may be and may not be pressed after
particular observation traces. The former buttons are
called safe, and the latter are said to be unsafe after the
trace in the framework of this protocol. The �-buttons
are declared safe (in the sense that there are no unob-
servable refusals) after any trace. Many protocols may
exist. Of our concern are not arbitrary interactions but
rather those that comply to a given ith protocol. We say
that an implementation corresponds to the ith safety
hypothesis if there are no interaction errors when any
environment complying to the ith protocol interacts
with this implementation. Each ith safety hypothesis
determines the ith class of safely testable implementa-
tions. It is impossible to verify by testing if an imple-
mentation is safely testable within the given ith proto-
col; indeed, such a verification would imply the verifi-
cation of the presence or absence of interaction errors.
Therefore, the corresponding safety hypothesis is a pre-
condition of testing. In turn, the test (the machine oper-
ator executing the test) must adhere to the ith protocol;
such testing will be said to be safe.

The conformance or nonconformance of an imple-
mentation can be discussed only in this context: each
ith interaction protocol determines the ith class of con-
formal implementations, which is a subclass of the ith
class of safely testable implementations. The purpose

of safe testing in the framework of the ith protocol is to
verify the conformance of an implementation provided
that it belongs to the ith class of safely testable imple-
mentations. Note that the implementation that is safely
testable in the framework of one protocol can have no
such property in the framework of another protocol.

We now give a more precise definition of the con-
formance as an embedding of unobservable implemen-
tation traces admitted by the specification. We want to
parameterize the conformance by the ith given interac-
tion protocol. First, we are only interested in the imple-
mentations that satisfy the ith safety hypothesis. Sec-
ond, among all the implementation traces that can be
observed on the given �/�-machine, we are only inter-
ested in the traces that are observable in the interactions
adhering to the ith protocol. The specification discrim-
inates (distinguishes?) the subset of admissible traces
in the set of all such traces. Now, the admissible traces
are not all the traces that can be observed in conformal
implementations but only those of them that can be
observed under safe testing. We assume that the
F-model Σ conforms to the specification and the set of
admissible traces is the same for any interaction proto-
col: this is the set of all �-traces Σ�. All the other traces
that can appear in conformal implementations but are
not observed under safe testing are determined by the
protocol. In order to make the set of admissible traces
identical to Σ�, we restrict ourselves to the protocols
that satisfy the following rules.

First rule. All the �-buttons are declared to be safe
after any �-trace.

Second rule. All the traces in Σ� can be checked by
testing. This means that, if the trace σ · 〈z〉 ∈ Σ�, then
the protocol must declare after σ at least one button “P”
that enables the action z (i.e., z ∈ P) to be safe. Note that
the �-buttons are safe according to any protocol, but
we impose upper bounds on the set of the safe �-but-
tons. In particular, all the �-buttons that enable the
action z may be declared safe after the trace σ. This rule
makes it possible to check whether or not the trace σ is
continued by the external action z. If z is observed after
pressing the button “P,” then the testing can be contin-
ued to compare the behavior of the implementation
with that of the specification after the trace σ · 〈z〉. If an
action z' is observed that does not belong to the specifi-
cation (σ · 〈z'〉 ∉ Σ), then this is an error (nonconfor-
mance).

Third rule. The protocol does not impose unneces-
sary constraints on the implementation; that is, all the
�-buttons that are not declared by the protocol to be
safe according to the first or the second rule are
declared unsafe; therefore, the safety hypothesis allows
them to be unsafe in the implementation. In particular,
if the trace σ is not continued by the actions that are
enabled by the �-button “Q” (i.e., ∀z ∈ Q σ · 〈z〉 ∉ Σ)
in the specification, then the button “Q” is unsafe after
σ according to any protocol. Note that, if a protocol

248

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

declared such a button to be safe, then any safely test-
able implementation that has the admissible trace σ
would be not conformal.

In addition to the admissible trace σ ∈ Σ� ∩ I, a
nonconformal implementation can have traces that are
not observable for the given protocol. First, if the button
“Q” is declared unsafe by the protocol and neither the
safety hypothesis nor the conformance conditions are
violated, then there can be an unobservable refusal Q ∈ �
after σ. Indeed, for any button “P” that is safe after σ
according to the protocol, we have ∃u (u ∈ P\Q ∨ u = P ∈
�)&σ · 〈u〉 ∈ I ∩ Σ. Second, any trace of the form σ ·
〈z〉 · λ, where the external action z is enabled only by the
buttons that are declared by the protocol to be unsafe
after σ, is admissible. This immediately follows from
the fact that the unsafe buttons are not pressed under
safe testing and, therefore, the presence or absence of
such continuations of σ cannot be checked. Certainly,
these additional traces cannot be observed under safe
testing according to the given protocol.

By way of example, consider the �/�-machine with
� = and � = {{a, b}, {b, c}} and the specification
Σ� = {�, ·〈b〉}. Depending on which buttons are consid-
ered to be safe at the very beginning (after the empty
trace), three types of protocols are possible:

(1) only “{a, b},”
(2) only “{b, c},”
(3) arbitrary.
The implementation I is safely testable if
(1) 〈b〉 ∈ I ∨ 〈a〉 ∈ I,
(2) 〈b〉 ∈ I ∨ 〈c〉 ∈ I,
(3) 〈b〉 ∈ I ∨ 〈a〉 ∈ I&〈c〉 ∈ I.
The implementation is conformal if
(1) 〈b〉 ∈ I&〈a〉 ∉ I,
(2) 〈b〉 ∈ I&〈c〉 ∉ I,
(3) 〈b〉 ∈ I&〈a〉 ∉ I&〈c〉 ∉ I.

In this example, any conformal implementation can
contain an arbitrary continuation σ along with any non-
empty trace σ · λ.

6. SAFETY HYPOTHESIS
AND SAFE CONFORMANCE

We will specify interaction protocols in the form of
the relation a button is safe after the �-trace of the
specification: P safe by Σ after σ; this relation must sat-
isfy the rules described above: ∀σ ∈ Σ� ∀P ∈ � ∀z ∈
L ∀Q ∈ �,

(1) P safe by Σ after σ,
(2) σ · 〈z〉 ∈ Σ ⇒ ∃P ∈ � ∪ � z ∈ P & P safe by Σ

after σ,
(3) Q safe by Σ after σ ⇒ ∃v ∈ Q σ · 〈v〉 ∈ Σ.
An �-trace of an implementation is said to be safe

if any external action z appearing in this trace is enabled
at least by one button that is safe in the implementation

0

after the trace prefix that immediately precedes this
action:

SafeIn(I) =def {σ ∈ I�|∀µ∀z ∈ L

(µ · 〈z〉 ≤ σ ⇒ ∃P ∈ � ∪ �

P safe in I after µ&z ∈ P}).

The safety hypothesis requires that, if the �-trace σ
of the specification is safe in a an implementation, then
any button that is safe after σ in the specification is also
safe after σ in the implementation

I safe for Σ =def ∀σ ∈ Σ� ∩ SafeIn(I)

∀P ∈ � ∪ � (P safe by Σ after σ
⇒ P safe in I after σ).

Testing is performed until the first error is met, and
it is stopped immediately after detecting a nonconfor-
mance. Now, the continuation of testing after obtaining
an inadmissible trace is not only senseless (i.e., it does
not affect the verdict), but is also unsafe because the
safety hypothesis does not guarantee anything in this
situation.

Denote the external actions and refusals that are
observed in the model T after the trace σ when the but-
ton P is pressed as obs(σ, P, T) =def {z|σ · 〈z〉 ∈ T&(z ∈
P ∨ z = P&P ∈ �)}.

An implementation is said to safely conform to the
specification if it is safely testable and any observation
after pressing a safe button is allowed by the specifica-
tion. Such a conformance will be denoted by saco (SAfe
COnformance):

I saco Σ =def I safe for Σ
&∀σ ∈ Σ ∩ SafeIn(I)∀P safe by Σ after σ

obs(σ, P, I) ⊆ obs(σ, P, Σ).

Generation of a complete set of tests for the saco
relation reduces to pressing each button “P” that is safe
in the trace σ after each trace σ that occurs in the spec-
ification and is observed. If an action z ∈ P or a refusal
P ∈ � that continue σ in the specification are observed
after pressing this button, then testing either completes
with the verdict pass or continues by pressing the next
button. Otherwise, the test returns the verdict fail.

All the definitions of safety and conformance given
above are applied to LTS models by using their F-mod-
els. For example,

I saco S =def Ftraces(I) saco Ftraces(S).

7. COMPLETION OF SPECIFICATIONS

Now, let us consider the differences in the defini-
tions of safe buttons in implementations and specifica-
tions safe in and safe by. The �-button “P” is safe after
a trace in an implementation if this trace does not con-
tinue with the refusal P; in a specification, this button is
safe if this trace is continued at least by one action z ∈ P
(even this is not a requirement if there are other safe

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 249

buttons that enable all the actions that continue the trace
in the specification and are enabled by “P”). In the first
case, the trace cannot be continued with the refusal P;
in the second case, it must be continued by an action z
∈ P and may also be continued by the refusal P. This
means that we ignore the �-refusals in the specification
after the traces that are continued by the actions belong-
ing to this refusal. Actually, in all the definitions, we use
for implementations the � ∪ �-projection I� ∪ �; for
specifications, we use the �-projection Σ�. This differ-
ence is a cause of severe difficulties—nonreflexivity
and nonmonotonicity of the conformance relation.

First, we consider the first difficulty: the same model
considered as an implementation can be not safely test-
able and, therefore, nonconformal to itself considered
as a specification. Moreover, the specification can con-
tain �-traces that do not belong to any conformal
implementation. An example is given in Fig. 1 for an
input–output LTS. Here, the button “?x” is safe after the
trace 〈?x〉 in the LTS specification S; therefore, it is safe
after the trace 〈δ, ?x, δ〉 (the refusal does not change the
state of the LTS). Therefore, if an implementation con-
tains the trace 〈δ, ?x, δ〉, it also contains the trace 〈δ, ?x,
δ, ?x〉. Since receiving outputs is safe, at least one of the
traces 〈δ, ?x, δ, ?x, !a〉, 〈δ, ?x, δ, ?x, !b〉, or 〈δ, ?x, δ, ?x, δ〉
must be observed. Therefore, the implementation con-
tains at least one of the traces 〈?x, δ, ?x, !a〉, 〈δ, ?x, ?x, !b〉,
or 〈?x, ?x, δ〉. Each of these traces is a continuation of a
safe trace of the specification by an observation gener-
ated by the safe button “δ”; however, this continuation
does not belong the specification, which contradicts the
conformance.

The nonreflexivity of conformance contradicts intu-
ition. Indeed, if the implementation is a “copy” of the
specification, we obtain an invalid implementation.
Note that, if � = , then safe in = safe by, and the rela-
tion saco is reflexive (and transitive; i.e., it is a preor-
der) (!). This fact suggests using the � ∪ �/ -seman-
tics instead of the �/�-semantics; in the former seman-
tics, all the refusals are observable. To replace the latter
semantics with the former one, a transformation of the
specification � is made, which is called completion. It
can be defined both for the trace and the LTS models.
In both cases, conformance (the set of conformal

0

0

implementations) must be preserved. For the trace
model, we have ∀I Isaco�/�Σ ⇔ I �(Σ).
Here, the subscript indicates the test semantics in which
the conformance relation is considered. The LTS com-
pletion is defined similarly; however, since several
LTSs with the same set of traces can correspond to the
same trace model, such a completion is not unique.

In the completed specification �(Σ), a new trace σ
may appear if it is admissible in the conformal imple-
mentation. A necessary condition is that the set D(σ) of
the subtraces obtained from σ by deleting some (may
be all) refusals contains a subtrace σ' ∈ Σ. Furthermore,
in �(Σ), the trace σ is continued by the �-refusal R if
this refusal is a continuation in Σ of every subtrace σ' ∈
D(σ) ∩ Σ. Finally, in �(Σ), the trace σ is continued by
the �-refusal P if, for any subtrace σ' ∈ D(σ) ∩ Σ and
any button “R” that is safe in Σ after σ', either there
exists an action z ∈ R\P such that σ' · 〈z〉 ∈ Σ or R ∈ �
and σ' · 〈R〉 ∈ Σ.

The completion described above is similar to the so-
called “demonic” completion for input–output systems
without observable input refusals [11–13]. The differ-
ence is that we allow arbitrary (including unobservable)
refusals in the completed part of the model. In addition,
the LTS transformation that does not completely pre-
serve the conformance ioco (weakens it) is proposed in
[12, 13]. In [11], the conformance preserving trace
transformation is proposed, but this conformance is
ioconf rather than ioco. This and some other conform-
ance relations found in the literature will be discussed
below. A review of various kinds of completions can
found in [14, 15].

Note that the completed specification cannot be con-
sidered in the �/� – semantics because it is not equiv-
alent to the initial specification in this semantics (see
Fig. 2).

To prove the existence of a trace completion, it is
sufficient to take the union of all the conformal trace
implementations �(Σ) = ∪({I|I saco Σ}) (!). To con-
struct the LTS completion, the union of LTSs is used: a
new initial state is added along with the τ-transitions
from it to the initial states of the underlying LTSs.
The corresponding trace models are combined in the
set-theoretic sense: Ftraces���(S) = ∪({I|I saco

saco� �∪ /0

?x

τ

τ

τ
δ

δ δ

?x !a

?x ?x !b

δ

!a

!a

?x

L = {?x, !a, !b}
� = {δ} = {{!a, !b}}

� = {{?x}}

I saco S ⇒ δ?xδ∉I

Fig. 1.

250

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

Ftraces(S)}). It is clear that this transformation cannot
be constructed algorithmically. However, there exists a
completion that can be constructed algorithmically (!).

8. MONOTONICITY OF CONFORMANCE

The second problem is the so-called nonmonotonic-
ity of conformance; that is, the fact that the conform-
ance is not preserved under the composition of LTSs.
More precisely, the composition of the implementa-
tions that are conformal to their specifications may be
not conformal to the composition of those specifica-
tions. This problem cannot be stated in the theory of
�-traces because the composition of trace models is
not defined in this theory. The monotonicity problem is
more general than the completion problem: it persists
even when there are no �-buttons (!).

The monotone LTS transformation � that preserves
the conformance of implementations solves this prob-
lem. The composition of the implementations that con-
form to their transformed specifications conforms to
the composition of these transformed specifications.
Naturally, the composition of the LTS completion and
the monotone LTS transformation of �� is the LTS
completion, which can be called the monotone comple-
tion. The union of conformal LTS implementations is
exactly the completion of this type (!). Also, there exists
a monotone transformation that can be constructed
algorithmically (!).

9. EXAMPLES OF TEST SEMANTICS
AND CONFORMANCE RELATIONS

Consider several test semantics (together with the
corresponding conformance relations) encountered in
the literature and interpret them as �/�-semantics.
Surveys of these semantics and conformances can be
found in [3, 4, 7]. For each of these semantics inter-
preted as an �/�-semantics, a unique safety hypothesis
is uniquely distinguished because, in such semantics,
each action z that is disabled by �-buttons is enabled
by a single �-button. All such actions that continue a
specification trace determine all the �-buttons that
must be declared safe after this trace.

Trace semantics. Such a semantics is determined
by the �/�-machine with � = and � = {L}. The
traces only contain external actions. Usually, the trace

0

preorder is the simple trace embedding. However, we
interpret a stop with an unobservable refusal as an inter-
action error and consider only safe testing. The safety
hypothesis requires that, if an observable trace in the
specification is continued by an external action, then it
cannot end at the terminal states of the LTS implemen-
tation. The operator is not allowed to press the button
“L” only after the traces that end at the terminal states
in the LTS specification.

Completed trace semantics. This semantics is
determined by the �/�-machine with � = {L} and
� = ∅. The only refusal L is observable in the terminal
state of the implementation when no other continua-
tions are possible. The traces contain external actions
and the refusal L; however, L can be followed only by
the same refusal L. Any implementation is safely test-
able. The corresponding conformance is called the test-
ing preorder.

Failure trace semantics or refusal trace seman-
tics. This semantics is determined by the F-machine
with � = �(L) and � = ∅. The traces contain external
actions and arbitrary refusals (Ftraces). Any imple-
mentation is safely testable. The corresponding con-
formance is called the failure trace preorder or refusal
preorder. There is also a variant of this semantics in
which only a finite set of external actions can be
enabled. Such a semantics is determined by the
�/�-machine in which � is the family of all finite sub-
sets of the alphabet L.

Here, we do not consider the corresponding equiva-
lences (trace, completed trace, and failure or refusal
equivalences) because they do not satisfy the principle
of independent behavior of implementations.

There are some specific semantics for the input–out-
put systems. All of them are based on the following
restrictions:

(1) The environment cannot choose which output to
accept and which to reject. If outputs are accepted, then
all of them are accepted.

(2) A single input can be sent without sending other
inputs.

Semantics for input–output systems without
input refusals. This semantics is determined by the
�/�-machine with � = {δ} = {{y!}|!y ∈ L}} and � =
{{?x}|?x ∈ L}. The traces contain inputs, outputs, and
the only refusal—the quiescence δ. The relation ior

S I C(S)

τ

τ τ

τ

xx

I saco�/� S
� = ∅, � = {{x}}

I saco�∪�/∅ C(S)

I –safeo�/� for C(S)

Fig. 2.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 251

(input–output refusal relation or repetitive quiescence
relation) is equivalent to the simple embedding of
traces I� ⊆ Σ�. In order for the testing to be safe, each
trace σ ∈ I� ∩ Σ� in the LTS implementation must end
at the quiescent states in which transitions correspond-
ing to all the inputs are defined. However, if such a trace
is not continued by an input ?x in the specification, the
implementation is not conformal. For this reason, the
specifications that contain, for example, only the trace
〈?x, !y〉 and all its prefixes does not have conformal
implementations.

The ioco (input–output conformance) relation is
exempt of the drawback of ior discussed above.
The ioco relation was proposed by Tretmans (see [7, 16]).
It is based on the input enabledness hypothesis: in each
reachable quiescent state, LTS implementations accept
all the inputs. However, actually, the input ?x is not sent
to the implementation after the trace σ that is not con-
tinued by ?x in the specification. In other words, the
behavior of the implementation after receiving such an
input does not matter for the ioco conformance. If I ioco
Σ and σ · 〈?x〉 ∈ I, then the implementation I' that dif-
fers from I only in that it refuses the input ?x after the
trace σ is also safely testable (there are no unobservable
refusals). Both these implementations are safely test-
able, and they cannot be discriminated under safe test-
ing. However, I is conformal while I' is not because it
does not belong to the domain of ioco. In other words,
the input enabledness hypothesis of the implementation
with respect to inputs is too strong. The safety hypoth-
esis proposed in this paper is more adequate to the test-
ing precondition of implementations: if the trace σ is
continued by the input ?x in the implementation, then σ
must not end in the implementation in a state in which
the input is refused. For the saco relation, there cannot
be two distinct implementations of which one is confor-
mal and the other is not and which are indistinguishable
under safe testing.

Semantics for input–output systems with input
refusals. This semantics is determined by the �/�-
machine with � = {δ} ∪ {{?x}|?x ∈ L} and � = ∅. The
traces contain inputs, outputs, and refusals (the quies-
cence δ and input refusals). Any implementation is
safely testable. The corresponding conformance of the
type saco is called ioco3δ [17–20]. This semantics
should be used when the specifications are completed
in the semantics without input refusals.

Semantics for multi input-outputs transition sys-
tems (MIOTS). Such systems are studied in the works
by Heerink and Tretmans [21, 22], where the mioco
conformance relation is proposed. The set of inputs is
divided into subsets called input channels LI; for LI, the
implementation must either enable any input from LI or
disable all of them. The set of outputs is also divided
into subsets called output channels LU. In contrast to the
inputs, no restrictions are imposed on the behavior of
implementations with respect to the outputs. Each
channel is assigned a specific θ-observation. For an

input channel, it means the refusal for all the inputs of
this channel; and for an output channel, it means the
absence of response in this channel (partial quies-
cence). Note that, in this case, the test does not neces-
sarily enable all the outputs or none of them; rather, it
must enable all the outputs from each output channel or
disable all of them. In an �/�-machine, each input ?x
is assigned the �-button {?x}, each output channel LU
is assigned the �-button LU, and there are no �-but-
tons. The constraint imposed on output enabling is
imposed on the implementations and specifications, but
it does not concern the machine organization. Any
implementation is safely testable.

For such a machine, the relations mioco and saco are
almost identical with the only exception: mioco allows
the implementation to enable an input regardless of
whether or not it is enabled or refused in the specifica-
tion. It seems that such a “liberalism” is explained by
the fact that mioco is based on ioco, in which all the
inputs are enabled. For mioco, this is not the case.
An implementation may refuse an input in certain
states after a certain trace if this is allowed by the spec-
ification; however, the implementation cannot refuse an
input in all the states after a certain trace.

Sometimes, input–output systems impose a special
constraint on the environment: it must not “block the
outputs” produced by the implementation [23, 24].
In terms of LTS, this means that, in each quiescent state
of the environment/test, transitions by all the outputs
must be defined.

Semantics of the input–output systems without
output blocking and without refusals. This semantics
is determined by the �/�-machine with � = {δ} and
� = {{δ, ?x}|?x ∈ L}. In contrast to the similar seman-
tics with output blocking, the safety hypothesis is
relaxed: if the trace σ is continued by the input ?x or by
outputs in the specification, then, in the implementa-
tion, σ must not end in the quiescent state in which ?x
is refused. While sending an input to a safely testable
implementation, we expect to observe an output rather
than the input reception. If the implementation has an
infinite chain of outputs (oscillations [23]), then we
cannot send the input ?x with the guaranteed reception by
the implementation. Moreover, if this chain does not
contain states in which ?x is received, we will never learn
it by continuously pressing the same button {δ, ?x}.

Semantics of the input–output systems without
output blocking with refusals. This semantics is
determined by the �/�-machine with � = {δ} ∪ {{δ,
?x}|?x ∈ L} and � = ∅. Any implementation is safely
testable. Input refusals are only observed together with
quiescence (in the quiescent states of the LTS imple-
mentation). The oscillation problem also occurs in this
case. Indeed, we can learn nothing about input refusals
in a nonquiescent state.

For the majority of the semantics with �-refusals
described above, their variants in which any refusal or
a refusal of a certain kind can be only observed at the

252

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

end of a trace were studied. After such a refusal has
been observed, no other observations are possible. In an
�/�-machine (and in a reactive machine) this situation
may correspond to keyboard locking after observing a
refusal. For generative machines, van Glabbeek pro-
poses to assume that the switches may not be toggled
from the blocked state to the free state. On the whole,
this is equivalent to keyboard locking in terms of the
testing power. For the completed traces semantics, the
situation is the same because the refusal of L implies
that there will be no other actions anyway. For the other
semantics, the conformance relations change as fol-
lows:

rf conf or failure preorder for the traces consist-
ing of external actions and the pairs <trace of external
actions, refusal> (failure pairs),

ior iot (input–output testing relation) for the
traces consisting of external actions and for the traces
consisting of external actions that end in a quiescent
state (quiescent traces),

ioco ioconf (both stand for the input–output
conformance).

The relation rioco in [24] is designed so that the
input refusals (in contrast to the quiescence) can only
occur at the end of traces.

All these variants reduce the testing power; how-
ever, it is not quite understood why the observation of a
refusal prevents the continuation of testing in practice.
Below, we do not consider this question.

10. DESTRUCTION

We introduce a new machine action called destruc-
tion; it is denoted by γ. γ-Action is any undesired
behavior of the system including the system destruc-
tion, which must be avoided while testing (for example,
the button of the immediate self-destruction in military
systems). Destruction, as well as refusal, is one of pos-
sible interpretation of the system’s unspecified behav-
ior. The difference between them is that the refusal
assumes the system protection from undesired action,
while the destruction guarantees nothing.

The destructive actions are often eliminated from
the consideration because the implementation must
check the validity of the call parameters [7, 22]. If the
parameters are incorrect, the implementation either
ignores the call or reports an error. This requirement is
quite natural if the system in question is a system of
“common use.” Then, it must be fool-tolerant. How-
ever, when internal components or subsystems with a
restricted access are tested, mutual checks of the call
correctness are not necessary. When the parameters
have a complex internal structure and nontrivial cor-
rectness conditions, the verification overheads increase
the time of the system development, its size, and also
increase the execution time. In this case, an alternative
is to have a thorough specification of the preconditions
for the operation calls [25]. For example, freeing the

memory that was not earlier allocated is the violation of
a precondition. It is the correctness of calls of compo-
nents made by other components that must be tested
rather than the behavior of components caused by
incorrect calls. Actually, this means that the behavior of
each component must be tested (against its postcondi-
tion) only for the calls that satisfy the component’s pre-
condition. In other words, since we want to test the
implementation rather than the environment, we are not
interested in the component’s behavior when it is called
with the violation of the preconditions; moreover, this
behavior is not regulated by the specification.

The semantics of the γ-action assumes that all the
observations after this action are unreliable. Since we
are only interested in reliable observations, we assume
that no observations are possible after the destruction.
The destruction is considered to be a conditionally
observable action: considered as an event, it can occur
during interaction; however, we restrict ourselves to
testing in which no such events occur. In this sense, the
destruction is similar to the unobservable refusal. Thus,
we are only interested in the safe interaction of the envi-
ronment with the implementation that does not cause
destruction.

The destruction, as well as τ-actions, is not con-
trolled by buttons, and it is always enabled. In the safe
testing, the operator should not press the button if it can
result in the execution of an external action that leads to
the destruction of the implementation. Thus, the
γ-action occurs only after an external action or in the
beginning of the work. The latter case is a degenerate
one: the implementation conforms only to the specifi-
cation that enables the destruction at the very begin-
ning; testing is not needed and even inadmissible (the
machine is not allowed to be turned on). In the LTS
model, a transition may be labeled not only by an exter-
nal action or by the symbol τ but also by the symbol γ.
When LTSs are composed, two new rules are added:

s s' � st s't,

t t ' � st st '.

We have a new kind of traces that end by the
destruction. Now, a button is safe after the trace σ ∈ I�

if it does not cause an unobservable refusal and does not
lead to the destruction (the condition that is doubly
underscored): P safe in I after σ =def (P ∈ � ∨ σ · 〈P〉 ∉
I) .

The interaction protocol is accordingly modified
(new doubly underscored conditions are added): ∀σ ∈
Σ� ∀R ∈ � ∀z ∈ L ∀Q ∈ �,

(1) R safe by after σ ,

(2) σ · 〈z〉 ∈ Σ &
 ⇒ ∃P ∈

� ∪ � z ∈ P & P safe by Σ after σ,

γ γ

γ γ

& z∀ P σ∈ z γ,〈 〉⋅ I∉

⇔ u∀ Rσ∈ u γ,〈 〉⋅ Σ∉

T∃ �∈ � z∪ T & u∀ T σ∈ ∈ u γ,〈 〉⋅ Σ∉

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 253

(3) Q safe by Σ after σ ⇒ ∃ϑ ∈ Q σ · 〈ϑ〉 ∈ Σ &
.

The definition of a safe trace also changes. Now it
(1) uses the relation safe in that takes account of the
destruction; (2) a safe trace cannot contain unsafe
�-refusals. The new concept of a safe trace in the spec-
ification is introduced. Earlier, we had no need for it
because safety was interpreted as the absence of unob-
servable refusals and the second rule in the protocol
guaranteed that, for each external action in the trace,
there was a button that enabled this action and did not
cause an unobservable refusal after the preceding trace
prefix. Now, we must take into account the possibility
of destruction. If there is the trace 〈γ〉, then there are no
safe traces.

SafeIn(I) =def {σ ∈ I�|〈γ〉 ∉ I&∀µ∀u

(µ · 〈u〉 ≤ σ ⇒ ∃P ∈ � ∪ �

P safe in I after µ&(u ∈ P ∨ u = P)}).

SafeBy(Σ) =def {σ ∈ Σ�|〈γ〉 ∉ Σ&∀µ∀u

(µ · 〈u〉 ≤ σ ⇒ ∃P ∈ � ∪ �

P safe by Σ after µ&(u ∈ P ∨ u = P)}).

The safety hypothesis now requires that there is no
destruction in the implementation if it is impossible in
the specification in the same situation, i.e., either at the
very beginning (before any button is pressed) or after a
safe continuation of a safe trace:

I safe for Σ =def (γ ∉ Σ ⇒ γ ∉ I)

&∀σ ∈ SafeBy(Σ) ∩ SafeIn(I)∀P ∈ � ∪ �

(P safe by Σ after σ ⇒ P safe in I after σ).

The conformance relation is constructed only on the
safe �-traces of the specification:

I saco Σ =def I safe for Σ
&∀σ ∈ SafeBy(Σ) ∪ SafeIn(I)

∀P safe by Σ after σ
obs(σ, P, I) ⊆ obs(σ, P, Σ).

The assertions concerning the reflexivity and transi-
tivity of the conformance relation in the absence of
�-buttons and assertions concerning the existence of a
completion � and a monotone transformation �
(including those that can be described algorithmically)
remain valid for the γ-semantics:

u∀ Q σ∈ u γ,〈 〉⋅ Σ∉
I saco�/�S ⇔ I �(S)

⇔ I saco�/��(S)(!).

For the γ-semantics, there exists a completed specifica-
tion that can be considered not only in the � ∪ �-seman-
tics but in the �/�-semantics as well (cf. Figs. 2 and 3).

Note that, in the completion �, the γ-completion
that continues the trace σ only by the trace σ · 〈z, γ〉 is
used instead of the “demonic” completion of σ by all
the traces σ · 〈z〉 · λ. Thus, no information about the
unsafe buttons is lost: after the “demonic” completion,
we have to test all the added traces σ · 〈z〉 · λ though it
is senseless (everything is enabled), while the added
trace σ · 〈z〉 is not tested in the case of the γ-completion
because it leads to the destruction.

11. DIVERGENCE

The divergence (an infinite internal activity) is not
necessarily an error of getting caught in an endless
loop. In some cases, the divergence is a correct and
inevitable behavior. For example, a test can replace not
the entire environment but only a part of it. Actually, the
composition of the implementation with the remaining
part of the environment is tested. The interaction of the
implementation with this part of the environment can
be endless, but it is perceived as an endless internal
activity from the test; that is, it is perceived as diver-
gence (the synchronous transitions in the composition
are τ-transitions). The purely internal divergence is also
possible; for example, this is a waiting loop in an oper-
ating system that continues arbitrarily long until it is
interrupted.

Actually, the problem is not in the divergence per se,
but in the exit from it. If an external action has a higher
priority than the internal activity, then the divergence
stops. In a machine with priorities, the enabledness of
the τ-actions depends on the selected button, and we
can indirectly control these actions and, therefore, the
divergence. In this case, we have the so-called execut-
able divergence: when a certain button is selected (or
when no buttons are selected), all the τ-actions of the
endless chain are executable, but when another button
is selected, they are not executable, therefore there is no
endless loop. The divergence that starts after selected
the button “A” can be exited when another button “B”
is selected under which the divergence is not execut-

saco� �∪ /0

S I C(S)

τ

τ
γx

x

I saco�/�γ S
� = ∅, � = {{x}}

I saco�∪�/∅γ C(S)

I saco�/�γ C(S)

Fig. 3.

254

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

able. Note that that the exit from divergence requires
that some buttons are toggled i.e., pressed without
observation (recall that there may be no observation).
The only case in which the divergence cannot be exited
for sure is when the divergence is executable when any
button is selected. For the machines without priorities,
any divergence has this undesirable property.

Divergence is inconvenient because it makes it
impossible to get an observation as a response to a test
action in a finite time; therefore, testing cannot be con-
tinued after the observation. In this sense, the diver-
gence is similar to an unobservable refusal. However,
there is an important difference: an unobservable
refusal occurs instead of an external action after a but-
ton is pressed, while the divergence occurs after an
external action (or in the initial state of the machine
before the first button is pressed) and manifests itself
only when the operator presses a button once more.
In other words, not the divergence per se is harmful but
the exit from it.

In a machine without priorities, the behavior of the
implementation in the case of divergence can be simu-
lated using a special ∆-action. It is enabled by any but-
ton and is considered conditionally observable. Consid-
ered as an event, the divergence can occur in the course
of interactions; however, we restrict ourselves to testing
that is devoid of such events. The ∆-action is very sim-
ilar to the γ-action; the only difference is that the
destruction cannot be disabled, while the ∆-action is
enabled by any button but is disabled if no buttons are
pressed; the latter situation simulates the divergence
when the attempt to exit it is made. The safety relations
are changed as follows (the additions are doubly under-
scored):

P safe in I after σ =def (P ∈ �

∨ σ · 〈P〉 ∉ I) & ∀z ∈ Pσ · 〈z, γ〉 ∉ I & σ · 〈∆〉 ∉ I.

∀σ ∈ Σ↓L� ∀R ∈ � ∀z ∈ L ∀Q ∈ �,

(1) R safe by Σ after σ ⇔ ∀u ∈ R σ · 〈u, γ〉 ∉ Σ & σ
· 〈∆〉 ∉ Σ,

(2) σ · 〈z〉 ∈ Σ & ∃T ∈ � ∪ � z ∈ T & ∀u ∈ T σ
· 〈u, γ〉 ∉ Σ ⇒ ∃P ∈ � ∪ � z ∈ P & P
safe by Σ after σ,

(3) Q safe by Σ after σ ⇒ ∃ϑ ∈ Q σ · 〈ϑ〉 ∈ Σ & ∀u
∈ Q σ · 〈u, γ〉 ∉ Σ .

Now, the safety hypothesis allows the divergence in
the implementation only if it is allowed in the specifica-
tion in the same situation, i.e., after the same trace that
is safe in the specification.

In the composition, divergence can occur as an infi-
nite chain of synchronous transitions even in the case
when there is no divergence in the operands. Therefore,
the class of models without divergence is not closed
with respect to composition.

Sometimes, the testing is considered in which a
direct (in contrast to conditional) observation of diver-

& σ ∆〈 〉⋅ Σ∉

& σ ∆〈 〉⋅ Σ∉

gence (∆-observation) or the so-called λ-observation is
possible. The λ-observation assumes the divergence or
an unobservable refusal. In both cases, either the possi-
bility of infinite observation or an upper bound on the
execution time of any external action and any finite
chain of τ-actions is assumed. If the display is empty
infinitely long or longer than a predefined timeout after
an �-button was pressed, then we have a divergence or,
in the case when a �-button was pressed, a λ-observa-
tion. If the time constraint is used as a means for detect-
ing refusals, the differences between � and �-buttons
are leveled out and the expiration of the timeout is inter-
preted as a λ-observation in both cases. Below, we will
assume that the divergence is modeled by the ∆-action
and the testing is safe; i.e., we assume that the testing
avoids unobserved refusals, divergence, and destruc-
tion. This assumption is based on the concept that no
deadlocks, no infinite waiting of the environment for
the interaction result, and no system destruction must
occur in the case of correct interaction.

12. MENU LIGHTS AND READY TRACES

There may additional testing capabilities that are
defined by the so-called menu lights in the machine.
The menu lights correspond to external actions. The
light corresponding to the action z is on if z is defined
in the machine. If the machine is active, the state of the
lights indicates the actions that are defined in the cur-
rent state or were defined in a previous state. For this
reason, it is usually assumed that the state of the lights
is only reliable when the machine is in a quiescent state s.
When the machine is at stop, the menu lights enable us
to determine the ready set, which is defined as the set of
all external actions defined in the state s, i.e., the set of
actions that are ready to execute. This set is denoted by
ready(s). The traces that can include ready sets in addi-
tion to external actions are called ready traces; the cor-
responding semantics, preorder, and equivalence are
called the ready trace semantics, ready trace preorder,
and ready trace equivalence, respectively.

The ready traces possess the generative property;
i.e., given such a trace, we can obtain all the refusal
traces that could be observed when the implementation
performs the same chain of transitions. In other words,
the set of ready traces unambiguously determines the
set of refusal traces. However, without using menu
lights, we cannot decide by observing a refusal trace
whether or not it is the complement (the replacement of
the refusals by their complements to the alphabet) of a
ready trace. When we have a refusal, we know that all
the enabled actions are not defined in the implementa-
tion. However, we do not know whether or not the dis-
abled actions are defined. Moreover, in a parameterized
machine, not all the complements of the ready sets are
observable refusals (correspond to �-buttons) in the
general case.

As for the refusal semantics, there are modifications
in which the observation of readiness does not make it

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 255

possible to continue testing. In this case, we have the
so-called ready pairs <trace of external actions, ready
set>, and the readiness semantics, readiness preorder,
and readiness equivalence. Similarly to the testing
machine with finite refusals, one can consider a
machine in which only finite ready sets of external
actions can be recognized. Van Glabbeek proposes to
interpret this situation in such a way that each menu
light is simultaneously a button, and the light may be on
only if the operator pressed this button. By pressing one
light button after another after the machine stopped in a
quiescent state (the green light is off), the operator can
find out if the corresponding actions are defined. How-
ever, if the action alphabet is infinite, it remains
unknown whether or not the resulting set of defined
actions is the ready set, i.e., the set of all the defined
actions.

The test capabilities modeled by menu lights
increase the power of testing; however, their practical
usefulness is doubtful. The fact that a refusal is observ-
able implies that the environment can find out whether
some action among those it demanded the implementa-
tion to perform was actually executed, and if it was,
then exactly which action; later, this knowledge can be
used to correct the subsequent interaction. In other
words, the environment calculates not only on getting a
confirmation about the execution of the required action
but also on the notification of refusal to execute this
action. This seems to be a natural behavior. However, in
order to determine the ready set, the environment must
find out which actions the implementation could exe-
cute in the given quiescent state. For this purpose, a
special polling operation is needed, which is not always
available in the implementation interface.

However, there are exceptions. For example, in
graphical interfaces, such a menu of defined actions
may appear on the display (sometimes, in the form of
all or a part of the actions in which the disabled actions
appear dimmed). Even in this example, the actions in
the graphical menu are only inputs; however, it is not
known in the general case which outputs the implemen-
tation will produce in response to pressing a button in
the graphical menu. In other words, for this example,
we must consider a testing machine in which the menu
lights are available only for some of the actions. One
may consider a more general testing capability of par-
tial ready sets. In this case, when in a quiescent state,
the system reports the status of each action. It can be (1)
defined (the light is green), (2) undefined (the light is
red), or (3) unknown (the light is off). Below, we con-
sider only the complete ready sets, when there is no
third possibility.

Now, let us discuss how the environment can use the
ready sets. The readiness is observed when the machine
is in a quiescent state. This enables the environment to
calculate any refusal. Therefore, the environment can
enable only the sets of actions in which at least one
action can be executed by the implementation. With

such an interaction protocol, unobserved refusals can-
not occur after the machine has stopped, although they
may still occur when a button is pressed after an exter-
nal action or at the beginning of the work. Refusals do
not provide any additional observations; for this reason,
no mixed traces that contain both ready sets and refus-
als are considered. Naturally, we still must be able to
detect the machine stop, which is made using the
θ-observations in an �/�-machine after pressing an
�-button or using the green light in a generative and
reactive machine. After the stop, the observed ready set
is added to the trace. In the �/�-machines, the safety
hypothesis is relaxed: it concerns the behavior of the
implementation only after the traces that do not end by
a ready set (the empty trace and the traces that end by
an external action). After such a trace σ, the �-button
“P” is safe in the specification Σ if it is safe after any con-
tinuation of this trace by the ready set R that is admissible
in the specification: ∀Rσ · 〈R〉 ∈ Σ ⇒ R ∩ P ≠ ∅.

In contrast to the external actions and refusals, it is
natural to assume that, for the ready sets, the conform-
ance implies that the implementation ready set Ri
includes a specification ready set Rs (Ri ⊇ Rs) after the
same trace rather than to assume that Ri = Rs. In other
words, if, after a trace, the implementation can turn out
to be in a state in which a certain set of actions Ri is
defined, then this must be allowed by the specification
in the sense that, after this trace, the specification
allows a state in which the set of defined actions Rs is
not greater than Ri. This reminds of the mandatory
behavior requirement: the implementation cannot pro-
pose the menu of actions that is less than the menu
allowed by the specification.

We will say that a trace in the implementation is
majorized by a trace in the specification if they have the
same length and the corresponding positions are occu-
pied either by the same external actions or by embed-
ded ready sets. If there is destruction, only the nonde-
structive external actions of the specification must be
taken into account (the destructive actions of the speci-
fication are not checked and, therefore, cannot be
defined in the implementation). For the sets of ready
traces, the permissive principle is still used; however an
implementation trace is allowed when the set of admis-
sible specification traces includes a majorizing trace
rather than the trace itself.

Such a conformance relation can be called the safe
conformance with ready traces; it is denoted by resaco.
In the �/�-semantics for LTSs, it is related to the saco
relation via a monotone completion ��:

I saco�/� S ⇔ I ��(S)

⇔ I saco�/���(S)

⇔ I ��(S)

⇔ I resaco�/���(S).

saco� �∪ /∅

resaco� �∪ /∅

256

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

This assertion is a hypothesis. The idea of its proof
could be based on taking the union of the conformal
implementations as the transformation ��. Note that
the equivalence I S' ⇔ I resaco�/�S' is
true only for the specification S' = ��(S) but not for
arbitrary specifications S'.

The ready sets have an important property of com-
putability under the composition of LTSs: the quies-
cence and the ready set of the composition state st are
uniquely determined by the quiescence and the ready
sets of the states s and t of the operands. Under the com-
position of LTSs, in the alphabets L and M, we have

st is quiescent ⇔ s is quiescent

&ready(s) ∩ ready(t) = ∅
&t is quiescent &ready(s) ∩ ready(t) = ∅,

st is quiescent: ready(st) = (ready(s)\M)

∪(ready(t)\L).

This fact enables us to defined the composition of
ready traces that, given the pair of traces λ and µ,
returns a set of traces. This set consists of all the traces
in which the subtrace of asynchronous actions from
{γ} ∪ L\M({γ} ∪ M\L) coincides with the subtrace of
the same actions of the trace λ (µ) and each ready set is
the composition of the corresponding ready sets in the
operand traces. The operation ReadyTraces of taking
the set of ready traces of an LTS is additive with respect
to the composition of LTSs and of the ready traces:

ReadyTraces(S T) = ∪(ReadyTraces(S)

 ReadyTraces(T))(!).

If the divergence is modeled by the ∆-action, we
also must compose infinite ready traces. If the operand
traces have infinite postfixes of inverse actions, then the
composition trace ends by the ∆-action.

The generative and the additive properties of ready
traces enable us to develop a closed trace theory that
includes both the conformance relation (even if it is
based on refusal traces rather than on ready traces) and
the composition of trace models. We believe that this
possibility makes the ready traces useful in the con-
formance theory.

13. REPLICATION AND SIMULATION
The observed behavior of the system under test

depends on which buttons are pressed by the operator
and when. In order to model various variants of the
operator behavior, the so-called replication button is
used in testing machines. It makes it possible to create
several copies of the machine at the given time and con-
tinue working with each copy independently. In a
parameterized machine, we assume that the replication
is performed before the work starts. In this case, various
copies of the machine imitate various testing “ses-
sions:” after each session, the machine can be made to
work from the beginning in the next session. Replica-

resaco� �∪ /∅

↑↓
↑↓

tion differs from such a session-by-session work in that
it abstracts itself from the possible number of sessions:
it can be infinite or even uncountable. Such a replica-
tion is necessary for the potential possibility to obtain
all the finite traces (logs in a machine with priorities)
using finite test experiments.

In van Glabbeek’s and Milner’s machines, a much
stronger replication is used; it can be performed at an
arbitrary moment. It enables one to obtain information
about the system state after the trace σ in the form of the
set of traces that can be observed in this state. Thus, the
states are distinguished up to the set of such traces. If a
replication is made in each copy after observing the
trace σ, then we obtain the set of continuing traces Σi in
the ith copy. In total, we have the family Σ = {Σi |i = 1,
2, …}. If the replication is only made before the start of
the work (only testing sessions), then we can only
determine the union ∪(Σ), i.e., the set of all traces that
continue σ in all the states after this trace. However, we
cannot find out the states of the machine associated
with these traces; i.e., we cannot determine the sum-
mands Σ1, Σ2, ….

The possibility to make a replication at any time
enables us to define such conformance relations as sim-
ulations and bisimulations, which take into account the
system sate in one way or another. These relations
include strong and weak simulations, delay simulation,
branching simulation, and others. Van Glabbeek also
considers various modifications of replication that
depend on various constraints imposed on the machine
state at which the replication may be made (for exam-
ple, only in the quiescent states) and on the number of
machine copies that may be created by pressing the rep-
lication button one time. These modifications deter-
mine the corresponding modifications of simulations
and bisimulations. To relate the trace σ observed before
the replication with its continuations after the replica-
tion, special operations of the “conjunction” type are
used. For the replication made before the start of the
work, such operations are not needed because σ is
always empty. In our opinion, the replication made at
an arbitrary time is practically important only in rare
special cases, which we do not consider in this paper.

14. GLOBAL TESTING

The observed traces are generally obtained nonde-
terministically; i.e., they do not uniquely determined by
the sequence of the buttons pressed by the operator.
Given the same sequence of buttons, the trace depends
on the nondeterministic choice of one of several execut-
able actions made by the machine. The nondeterminism
of the action choice can be interpreted as a result of
abstracting from some external factors—weather con-
ditions—that are not taken into account; these condi-
tions uniquely determine the choice.

Note that, for a machine with priorities, logs rather
than traces must be stored; moreover, one must take

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 257

into account the time delays made by the operator
between an observation and the subsequent pressing of
a button or between two successive button pressings
when they are toggled without observation. For this
reason, we include into the weather conditions also the
factors that affect the “free will” of the operator thus
determining the time delays between button pressings.
This is quite natural because the operator models the
tester, which is a computer program. Such a program is
nondeterministic only at a certain level of abstraction,
when we neglect other programs or the hardware affect-
ing its behavior.

If the machine uses no priorities, we may assume
that the operator works sufficiently quickly. The
weather conditions include only the factors that affect
the machine but not the operator. Certainly, this does
not mean that the operator cannot work slowly in some
test experiments. This only means that any trace that
can be obtained when the operator works slowly can
also be obtained when he works quickly.

For the completeness of testing, we must assume
that that any weather conditions can be reproduced in
an experiment. In the formalism of the testing machine,
this can be interpreted so that a sufficient number of
copies for each variant of the weather conditions are
created by replication. If there is such a possibility, the
testing is said to be global. Note that we abstract our-
selves from the number of variants of the weather con-
ditions. Here, it is important to have a theoretical possi-
bility to check the system’s behavior under any weather
conditions and arbitrary behavior of the operator.

While performing replication, at least one copy of
each combination of the test considered as an instruc-
tion for the operator and a variant of the weather condi-
tions must be made. Since it is known in advance which
test is run on the machine, we may assume that the cop-
ies are labeled by the tests, even more so that we are
only interested in the tests belonging to a certain com-
plete test suite. Thus, for each test case belonging to the
test suite under consideration, as many copies as there
are variants of the weather conditions are created.
A copy corresponding to a certain variant of the weather
conditions for a certain model test provides a model of
the run of a real test on the given system.

Certainly, only finite test cases are used in practice,
as well as the number of test cases in the test suite and
the number of runs of each test case must be finite.
Since the test cases are finite, the complete test suite
usually contains an infinite number of test cases. More-
over, without additional conditions, we cannot be sure
that we have conducted the test experiments for each
test case under all possible weather conditions. These
problems can be resolved in a number of ways.

One of them is to provide special test capabilities for
weather control. For this purpose, we must go beyond
the framework of the model; indeed, the model does not
take into account side external details; i.e., it does not
take into account the weather. Therefore, testing

becomes dependent not only on the specification but
also on some implementation details, which can be
called the operational environment of the implementa-
tion. For each variant of the operational environment,
we have to create a special test suite. However, in some
cases, practical advantages can be obtained along these
lines.

Another solution is to make special implementation
hypotheses. For a finite test suite, it is assumed that, if
the implementation behaves correctly on its test cases,
it will also behave correctly on all the test cases in the
complete suite. For a finite number of runs, it is
assumed that, if the implementation behaves correctly
under certain weather conditions, it will also behave
correctly under arbitrary weather conditions.

The third solution can be used if we know the prob-
ability distribution of the weather conditions. In this
case, the testing is complete with a certain probability
[26].

The fourth solution, which is close to the third one,
assumes that only a finite number of weather conditions
(up to the equivalence) is possible in each situation
(after a trace) and there exists a number N such that,
after N test runs, the behavior of the implementation is
verified for all the weather conditions possible in the
current situation [8, 27].

Finally, there is a more radical solution: to prohibit
nondeterminism of the implementation; in this case, the
implementation hypothesis restricts the class of imple-
mentations to the deterministic ones. Although rather
naive, it is a commonly used practical method [28]. It is
justified by the fact that it is often known in advance
that the implementations of interest are deterministic.

Instead of complete but infinite test suites, in prac-
tice one has to resort to finite sound suites: if a test
returns the verdict fail, the implementation is not con-
formal. Such a finite test suite is constructed using
some coverage criterion so as to cover all the classes of
situations (errors) of interest. Theoretically, a finite test
suite can be obtained by filtering the complete enumer-
able test suite by the coverage criterion, although more
direct methods of constructing the desired suite are
more practical. A rather general approach is to use a
specification model that is coarser than the initial
model; it is called the test model. The test model is the
result of the factorization of the initial LTS specifica-
tion with respect to the equivalence of transitions,
which is usually reduced to the equivalence of states
and (or) actions [29]. Sometimes, nondeterminism dis-
appears after factorization. In order to justify this
approach, a motivated implementation hypothesis is
needed that assumes that all possible implementation
errors can be detected when testing against the factor-
ized specification (more generally, using a finite test
suite satisfying a coverage criterion) [29].

A practical example is testing a finite state automa-
ton against a specification defined in the form of a finite
state automaton. If we have a special operation that can

258

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

directly poll the current state of the implementation
(status message), then the complete testing reduces to a
traversal of the transition graph of the automaton and
getting the status message in each state [15]. The tra-
versal of the transition graph is also used in the case of
black box testing when no states of the implementation
are available. In this case, for the testing to be complete,
an implementation hypothesis is required that makes up
for the impossibility to determine the states of the
implementation [30–32]. This approach can be
extended to the general case of the LTSs for input–out-
put systems [33]. In particular, this concerns the so-
called quiescent testing when the inputs are sent to the
implementation only in its quiescent states (in this case,
the problem of output blocking is also removed) [34].

15. INFINITE AND NEGATIVE OBSERVATIONS

An infinite observation is the possibility to conduct
a test experiment infinitely long and obtain an infinite
trace. For the conformance relations based on finite
traces, an infinite trace does not add anything to the set
of its finite prefixes. An exception is the direct observa-
tion of divergence and the λ-observation discussed
above. Infinite observations and the conformance rela-
tions based on infinite traces are not usually considered
to be important for practice.

The negation ¬σ means that the trace σ does not
belong to the set of observable traces that can be
obtained using the given testing machine to check the
given conformance relation. A negative observation
assumes that we can (at least, theoretically) obtain all
the observable traces. To this end, replication (at least,
before the start of the work) and global testing are
needed. In essence, a negative observation is an obser-
vation that is calculated from positive, i.e., actual,
observations. When the replication is only made before
the start of the work, the set of observable traces is the
union of the sets of traces for each test case.

Had we allowed deadlocks in the interaction of the
environment with the implementation, we could calcu-
late some refusals as negative observations when there
is no divergence. Indeed, let the trace σ be not contin-
ued by any action from P ∈ � ∪ � in the set of observ-
able traces; i.e., assume that ¬σ · 〈z〉 for each z ∈ P.
Then, in the implementation, σ is continued either by
divergence or by the refusal of P. Therefore, in the
absence of divergence, the trace σ · 〈P〉 can be calcu-
lated. However, this does not imply that all the refusals
can be observed because σ can be continued in the
implementation both by the refusal of P or by some
actions z ∈ P. To be able to observe all the refusals, rep-
lication at an arbitrary time moment is required. More-
over, there is a problem concerning continuation after a
refusal. In order to be able to find out if there exists the
trace σ · 〈P〉 · µ by observing the trace σ · µ, we must
determine whether or not the trace µ begins at a quies-
cent state after σ. If σ ends by a refusal R, then this is
the case. However, how can we determine this refusal

R? Thus, we see that even in the case when deadlocks
and negative observations of refusals are allowed, we
need some means for observing the machine stop—a
green light or �-refusal in the �/�-machine.

The situation with the calculation of ready sets is
similar. Without replication at an arbitrary time
moment, we can only calculate the set of actions that
continue a trace; i.e., we can calculate the union of the
ready sets in the quiescent states after a trace. To deter-
mine the summands, we need to be able to do replica-
tion at an arbitrary time moment and to observe the
machine stop.

If we do not allow divergence and destruction in the
case of correct interactions, then the negative observa-
tions add nothing to checking the conformances based
on the independence principle, which states that the
behavior of an implementation is correct or incorrect
independently of its other behaviors. The final verdict is
the conjunction of the verdicts returned by all the runs
of all test cases from the complete test suite.

16. PRIORITIES

We have already discussed the advantages of priori-
ties in implementations and the problems concerning
the testing of such implementations. Here, we want to
note that the θ-transition, which is usually allowed only
in tests, could also be used in implementations as one
of the methods of specifying priorities. Actually, this
transition is internal but has the minimal priority: it is
performed only when none of the other transitions can
be performed. In an implementation, the θ-transition
can be used as a method for specifying the alternative
behavior in the case of deadlocks. In particular, block-
ing outputs by the environment (when the outputs sent
by implementation are rejected) does not present diffi-
culties if an alternative behavior can be specified in this
situation. Moreover, in a quiescent state of the imple-
mentation, the θ-action makes it possible for the imple-
mentation to detect the absence of inputs. This variant
was studied in [34], where such a θ-action was called
the ε-action. Unfortunately, priorities are poorly stud-
ied in testing theory.

17. CONCLUSIONS

We considered various testing capabilities specified
using a testing machine. Among them, we distin-
guished a set of theoretically powerful and practically
important capabilities that determine the �/� testing
semantics. This semantics is constructed on the basis of
observing external actions and refusals. The novelties
are as follows.

(1) The semantics is parameterized by the families
of observable and unobservable refusals, which enables
us to take into account various constraints on (correct)
interactions.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

FORMALIZATION OF TEST EXPERIMENTS 259

(2) Destruction is considered as a disabled action
that is possible but must not be performed under correct
interactions.

(3) The ∆-action provides a model of divergence;
this action is also possible but must not be performed
under correct interactions.

On the basis of this semantics, the concept of safe
testing, the implementation safety hypothesis, and the
safe conformance relation (saco) corresponding to the
independent observation principle are proposed.

For a more narrow class of interactions, the �/�-
Ready-semantics based on ready traces cab be used
along with the corresponding resaco relation. In con-
trast to �-traces, the composition for the ready traces
can be defined so that the ready traces in the composi-
tion of LTSs are identical to the composition of the
ready traces in the LTS operands. This additivity prop-
erty, along with the generativity property (�-traces can
be obtained from ready traces) make it possible to
develop the closed trace theory that includes both con-
formance relation (even if it is based on �-traces) and
the composition of trace models. This makes ready
traces useful in conformance theory independently of
the possibility to observe them in practice.

We also formulated some propositions concerning the
relationships between the relations saco and resaco in
�/�-, � ∪ �/∅-, �/�-Ready-, and � ∪ �/∅-Ready-
semantics. Transition to the next semantics in this list is
performed using a completion transformation, which
solves the conformance reflexivity problem, while the
monotone transformation solves the monotonicity
problem (conservation under composition). The proof
of the assertions labeled by (!) is beyond the scope of
this paper. In [20], these assertions are proved for
input–output systems in which the quiescence and
input refusals are the only observable refusals. The
assertion concerning the resaco relation remains a
hypothesis.

REFERENCES

1. Bernot, G., Testing against Formal Specifications: A
Theoretical View, TAPSOFT'91, Abramsky, S. and
Maibaum, T.S.F., Eds., vol. 2, pp. 99–119, Lect. Notes
Comput. Sci., 1991, vol. 494.

2. Milner, R., Modal Characterization of Observable
Machine Behavior, Proc. CAAP, 1981, Astesiano, G. and
Bohm, C. Eds., Lect. Notes Comput. Sci., 1981, vol. 112,
pp. 25–34.

3. Van Glabbeek, R.J., The Linear Time—Branching Time
Spectrum, Proc. of CONCUR'90, Baeten, J.C.M. and
Klop, J.W., Eds., Lect. Notes Comput. Sci., 1990,
vol. 458, pp. 278–297.

4. Van Glabbeek, R.J., The Linear Time—Branching Time
Spectrum II: The Semantics of Sequential Processes
with Silent Moves, Proc. of CONCUR’93, Hildesheim,
Germany, 1993, Best, E., Ed., Lect. Notes Comput. Sci.,
1993, vol. 715, p. 66.

5. Lynch, N.A. and Tuttle, M.R., Hierarchical Correctness
Proofs for Distributed Algorithms, Proc. of the 6th ACM
SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, 1987, pp. 137–151.

6. Phalippou, M. Relations d’Implantation et Hypotheses
de Test des Automates a Entrees et Sorties, PhD Thesis,
l’Universite de Bordeaux 1, 1994.

7. Tretmans, J., Test Generation with Inputs, Outputs and
Repetitive Quiescence, Software Concepts and Tools,
1996, vol. 17, issue 3.

8. Milner, R., A Calculus of Communicating Systems,
Lect. Notes Comput. Sci., 1980, vol. 92.

9. Milner, R., Communication and Concurrency, Prentice-
Hall, 1989.

10. Vaandrager, F., On the Relationship between Process
Algebra and Input/Output Automata, Logic in Computer
Science, Sixth Annual IEEE Symposium, IEEE Com-
puter Society, 1991, pp. 387–398.

11. Jard, C., Jéron, T., Tanguy, L., and Viho, C., Remote
Testing Can Be as Powerful as Local Testing, Formal
Methods for Protocol Engineering and Distributed Sys-
tems, FORTE XII/PSTV XIX'99 Wu, J., Chanson, S., and
Gao, Q., Eds., Beijing, 1999, pp. 25–40.

12. Van der Bijl, M., Rensink, A., and Tretmans, J., Compo-
sitional Testing with ioco, Formal Approaches to Soft-
ware Testing: Third Int. Workshop FATES, Petrenko, A.
and Ulrich, A., Eds., Montreal, 2003, Lect. Notes Com-
put. Sci., 2003, vol. 2931, pp. 86–100.

13. Van der Bijl, M., Rensink, A., and Tretmans, J., Compo-
nent Based Testing with ioco, CTIT Technical Report,
Univ. of Twente, 2003, no. TR-CTIT-03-34.

14. Von Bochmann, G.V. and Petrenko, A., Protocol Testing:
Review of Methods and Relevance for Software Testing,
Proc. of ISSTA, 1994, pp. 109–124.

15. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite State Machines: A Survey, Proceedings of
the IEEE, vol. 84, no. 8, pp. 1090–1123, Berlin: IEEE
Computer Society, 1996.

16. Tretmans, J., Formal Approaches to Conformance Test-
ing, PhD. Thesis, Enschede, Netherlands: Univ. of
Twente, 1992.

17. Bourdonov, I.B. and Kossatchev, A.S., Testing Compo-
nents of a Distributed System, Trudy Vserossiiskoi kon-
ferentsii “Nauchnyi servis v seti Internet” (Proc. of the
All-Russia Conf. on the Research Services on the Inter-
net), Moscow: Mosk. Gos. Univ., 2005, pp. 63–65.

18. Bourdonov, I.B. and Kossatchev, A.S., Verification of the
Composition of a Distributed System, Trudy Vserossi-
iskoi konferentsii “Nauchnyi servis v seti Internet” (Proc.
of the All-Russia Conf. on the Research Services on the
Internet), Moscow: Mosk. Gos. Univ., 2005, pp. 67–69.

19. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Formal Conformance Testing of Systems with Refused
Inputs and Forbidden Actions, Proc. of MBT, Vienna,
2006.

20. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Teoriya sootvetstviya dlya sistem s blokirovkami i
razrusheniyami (Conformance Theory for Systems with
Refusals and Destruction), Moscow: Nauka (in press).

21. Heerink, L. and Tretmans, J., Refusal Testing for Classes
of Transition Systems with Inputs and Outputs, in For-

260

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

BOURDONOV et al.

mal Description Techniques and Protocol Specification,
Testing and Verification, Chapman & Hill, 1997.

22. Heerink, L. Ins and Outs in Refusal Testing, PhD Thesis,
Enschede, Netherlands: Univ. of Twente, 1998.

23. Petrenko, A., Yevtushenko, N., and Huo, J.L., Testing
Transition Systems with Input and Output Testers, Proc.
15th Int. Conf. on Communicating Systems,
TestCom’2003, Sophia, Antipolis, France, pp. 129–145.

24. Lestiennes, G. and Gaudel, M.-C., Test de Systemes
Reactifs non Receptifs, J. Europ. des Systemes Automa-
tises, Modelisation des Systemes Reactifs, 2005,
pp. 255–270.

25. Hoare, C.A.R., An Axiomatic Basis for Computer Pro-
gramming, Commun. ACM, 1969, vol. 12, no. 10,
pp. 576–585.

26. Blass, A., Gurevich, Y., Nachmanson, L., and Veanes, M.,
Play to Test Microsoft Research, Technical Report,
2005, no. MSR-TR-2005-04; 5th Int. Workshop on For-
mal Approaches to Testing of Software (FATES 2005),
Edinburgh, 2005.

27. Fujiwara, S. and von Bochmann, G. Testing Nondeter-
ministic Finite State Machine with Fault Coverage, Proc.
IFIP TC6 Fourth Int. Workshop on Protocol Test Sys-
tems, 1991, Kroon, J., Heijink, R.J., and Brinksma E.,
Eds., North-Holland, 1992, pp. 267–280.

28. Petrenko, A., Yevtushenko, N., and von Bochmann, G.,
Testing Deterministic Implementations from Nondeter-
ministic FSM Specifications, Selected Proc. of the IFIP
TC6 9th Int. Workshop on Testing of Communicating
Systems, 1996.

29. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Application of Finite Automatons for Program Testing,
Programmirovanie, 2000, no. 2, pp. 12-28 [Program-

ming Comput. Software (Engl. Transl.), 2000, vol. 26,
no. 2, pp. 61–73].

30. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case, Programmirovanie, 2003,
no. 5, pp. 11-30 [Programming Comput. Software (Engl.
Transl.), 2003, vol. 29, no. 5, pp. 245–258].

31. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Nondeterministic Case, Programmirovanie, 2004,
no. 1, pp. 4–24 [Programming Comput. Software (Engl.
Transl.), 2004, vol. 30, no. 1, pp. 2–17].

32. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., and
Bourdonov, I.B., The UniTesK Approach to Designing
Test Suites, Programmirovanie, 2003, no. 6, pp. 25-43
[Programming Comput. Software (Engl. Transl.), 2003,
vol. 29, no. 6, pp. 310–322].

33. Kuliamin, V.V., Kossatchev, A.S., Petrenko, A.K., Pa-
koulin, N.V., and Bourdonov, I.B., Integration of Func-
tional and Timed Testing of Real-Time and Concurrent
Systems, in Perspectives of System Informatics, Lect.
Notes Comput. Sci., 2003.

34. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Asynchronous Automata: Classification and Testing, Tr.
ISP RAN (Proceedings of Institute for System Program-
ming, Russian Academy of Sciences), 2003, vol. 4,
pp. 7–84.

35. De Nicola, R. and Hennessy, M.C.B., Testing Equiva-
lence for Processes, Theor. Comput. Sci., 1984, vol. 34,
pp. 83–133.

36. Langerak, R. A., Testing Theory for LOTOS Using
Deadlock Detection, in Protocol Specification, Testing,
and Verification IX, Brinksma E., Scollo, G., and Viss-
ers, C.A., Eds. North-Holland, 1990, pp. 87–98.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

