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1. INTRODUCTION

Correctness of a system under study is meant to be
conformance of the system to given requirements.
When speaking of conformance verification, one sug�
gests that the system is mapped into an implementa�
tion model (implementation); requirements are
mapped into a specification model (specification);
and conformance, into a binary conformance relation.
If requirements to the system are expressed in terms of
its interaction with the external environment, then the
conformance can be checked by means of testing, i.e.,
in the course of test experiments with the system under
study.

One of the most well�known conformances is the
ioco (Input�Output COnformance) relation intro�
duced by J. Tretmans [12]. The interaction is meant to
be exchange of discrete portions of information
between the implementation and environment.
The information transmitted from the environment to
the implementation is called stimulus (input), and the
information that the implementation sends to the
environment is called reaction (output). It is assumed
that the implementation cannot refuse to receive a
stimulus (stimulus blocking is impossible); however, the
implementation can stop to produce reactions. Note
that such a refusal constitutes a special type of observa�
tion of implementation behavior, which is denoted by
symbol δ. The result of a test experiment is an observa�
tion trace—a sequence of stimuli, reactions, and
refusals δ.

The ioco relation is defined on the LTS (labeled
transition system) models. The LTS model is based on
the notions of a state and transition between states.
There are three types of transitions: stimulus�driven

transition, reaction�driven transition, and internal
(unobservable) τ�transition.

The ioco relation suggests that the implementation
is always ready to receive any stimulus (input�
enabled), whereas no such constraint is imposed on
the specification. This difference results in nonreflex�
ivity of the ioco relation. As a result, the specification
may have nonconformal traces, which never appear in a
conformal implementation.

Moreover, an ioco implementation and ioco speci�
fication must not contain infinite chains of τ�transi�
tions (divergence). This leads to certain difficulties in
composition of such models, since divergence may
appear as a result of composition.

The basic problem of the ioco relation is also related
to composition. This is violation of monotonicity:
composition does not preserve conformity in the sense
that composition of implementations that are confor�
mal to their specifications is nonconformal to the
composition of these specifications. A special kind of
the monotonicity problem is displayed when testing in
a context, where the test interacts with the implemen�
tation via some context (for example, queues of stim�
uli and/or reactions) rather than directly. The compo�
sition of a conformal implementation with a context
may occur nonconformal to the composition of the
specification with this context. As a result, the test
detects “false” errors, which never occur in the direct
interaction of the test with the implementation.

The above�specified problems are usually resolved
by means of one or another transformation of specifi�
cations, which is called completion [3, 6–8, 10, 13, 14].
The completed specifications are everywhere defined
by stimuli, like the implementations, and the above�
specified problems are lacking, or simplified, on the
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class of such specifications. However, the essential dis�
advantage of the transformations used so far is that the
ioco relation is not invariant with respect to them:
completion can reduce conformance (some noncon�
formal implementations become conformal) and/or
strengthen it (some conformal implementations
become nonconformal) [1, Section 2.5.3].

The best transformation among them is the so�
called demonic completion [13, 14]. It replaces stimulus
blocking by the so�called chaotic behavior [4], which
admits any observation traces. This completion does
not strengthen conformance but can reduce it. A com�
pletion without these disadvantages was proposed in
[7]. However, firstly, it is defined for a simpler relation
ioconf rather than for ioco. Secondly, it is not an LTS
that is transformed: a set of its traces is subjected to the
transformation. That is, an LTS with a completed set
of traces is not constructed, which does not allow us to
use this completion upon composition of LTS models.

The earlier proposed completions do not solve the
problem of “false” errors when testing in a general
context, which admits stimulus blocking. Note that
such contexts are met in practice. For example,
bounded queues of stimuli and reactions may be
treated as LTSs with stimulus blocking (when the
queue is full).

In this paper, we propose two completion transfor�
mations of LTS specifications that do not have the
above�specified disadvantages and are applicable to
bounded, but still sufficiently wide, classes of specifi�
cations. The first transformation is applied when test�
ing in a context that is not everywhere defined by stim�
uli is not planned. The second, more complicated,
transformation imposes more severe restrictions on
the specification and can be applied in all cases.

In Section 2, we introduce basic LTS concepts and
notation and define the ioco relation, LTS composi�
tion, and test generation for ioco. In Section 3, the ioco
relation is discussed in more detail, and examples of
specifications and implementations are given to illus�
trate the problems under study. The first of the pro�
posed completions of the LTS specifications is intro�
duced in Section 4. In Section 5, it is applied to the
examples from Section 3. The second transformation
for testing in a general context is defined in Section 6.

2. LTS MODEL AND IOCO RELATION

2.1. Labeled Transition System (LTS)

The implementation and specification model used
is the labeled transition system (LTS). It is defined as a
set S = LTS(VS, L, ES, s0), where VS is a nonempty set
of states, L is an alphabet of external actions, ES ⊆ VS ×
(L ∪ {τ}) × VS is a set of transitions, and s0 ∈ VS is an
initial set. The class of all LTSs is denoted as LTS. For
LTSi ⊆ LTS, the class of all LTSs in alphabet L belong�
ing to LTSi is denoted as LTSi(L).

Single arrows will denote presence/absence of
transitions:

A sequence of external actions is called a trace. For
a given state s, we consider traces beginning in this
state and traces ending in this state.

Formally, for z ∈ L and s =  ∈ L*, s ⇒

s'  s = s'

A state s is said to be reachable if there is a trace
from the initial state to it. The set of reachable states of

an LTS S is denoted as der(S)  {s ∈ VS |∃σ s0  s}.
A state s is said to be terminal if there are no transitions
from it. A state s is stable if there are no τ�transitions

from it: ∀u ∈ L ∩ {τ} s . A state s is said to be diver�
gent (which is denoted as s ↑) if it is a beginning of an
infinite chain of τ�transitions. Otherwise, state s is said
to be convergent. An LTS is said to be strictly conver�
gent if all reachable states in it are convergent. The
class of all strictly convergent LTSs is denoted as LTS1.

2.2. ioco Semantics of Interaction

Semantics of the ioco relation assumes that the uni�
verse of external actions L is divided into universe of
stimuli (input) X and universe of reactions (output) Y:
L = X ∩ Y & X ∩ Y = ∅. For an alphabet L ⊆ L of an
LTS, we denote X = L ∩ X and Y = L ∩ Y. Then, L =
X ∪ Y & X ∩ Y = ∅. Interaction of an implementation
in alphabet L ⊆ L with the environment reduces to a
sequence of interactions of the following two types:
(1) sending one specified stimulus x ∈ X from the envi�
ronment to the implementation and (2) receipt of an
arbitrary reaction y ∈ Y from the implementation by
the environment. It is assumed that no refusal of
receipt of a stimulus by the implementation (which is
called stimulus blocking) is possible. At the same time,
the implementation may refuse to produce reactions.
Note that such a refusal is observable, and the corre�
sponding observation is denoted by symbol δ.

A state s is called quiescent and denoted as δ(s) if it is

stable and has no reaction�driven transitions δ(s)  ∀u ∈
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Y ∪ {τ} s . Refusal δ is observable in quiescent states
of the implementation. In quiescent states of an LTS

S, let us add loop transitions by symbol δ: s  s 
δ(s). This will result in a new LTS S' = LTS(VS, Lδ, ES', s0)
where Ld = L « {d} and ES ' = ES ∪ {(s, δ, s)|s ∈ VS &
δ(s)}. A trace of LTS S ' will be referred to as an S�trace
(suspension trace) of LTS S. Let us extend the double�
arrow notation to the S�traces. The set of the S�traces
of an LTS S is denoted as

Straces(S)  {δ ∈ .

An LTS in alphabet X ∪ Y is said to be everywhere
defined by stimuli if, in each reachable stable state of
the LTS, transitions by all stimuli are defined:

∀s ∈ der(S)(s   ∀x ∈  s ).

A specification for ioco is a strictly convergent LTS
in alphabet L ⊆ L. An implementation for ioco is a
strictly convergent LTS in alphabet L ⊆ L that is every�
where defined by stimuli. The class of such LTSs is
denoted as LTS2. For a strictly convergent LTS, the
property of being everywhere defined by stimuli is
equivalent to the existence of a trace by each stimulus

in any reachable state: ∀s ∈ der(S)∀x ∈ X s . The
property of an implementation of being strictly con�
vergent and everywhere defined by stimuli is not veri�
fied upon testing; it is its precondition, i.e., a hypothe�
sis of implementation.

2.3. Definition of the ioco Relation

The set of observations that can be obtained upon
receiving reactions of an LTS S in alphabet X ∪ Y that
is in a state a ∈ VS or in a state from the set A ⊆ VS is
denoted as

out(a)  {z ∈ Yδ |a }, where Yβ = Y ∪ {δ},

out(A)  ∪{out(a)|a ∈ A}.

The ioco relation requires that, upon receiving
reactions from an implementation I, only those obser�
vations can be obtained that are possible in specifica�
tion S in the same situation, i.e., after observation of
the same S�trace. Formally,
∀L ⊆ L ∀I ∈ LTS2(L) ∀S ∈ LTS1(L)

I ioco S  ∀σ ∈ Straces(S)

out(i0 after σ) ⊆ out(s0 after σ).

2.4. Parallel Composition of LTSs

On the universe of external actions L, we define
involution “_” as an operation that, with each external
action, associates the opposite action, reaction with
stimulus and stimulus with reaction: ∀x ∈ X  ∈ Y &

u
–

δ =
Δ

=
Δ

Lδ
* s0 }⇒

σ
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– X x
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x

∀y ∈ Y  ∈ X & ∀z ∈ L  = z. Let us extend the invo�

lution “_” to a set A of external actions:   { |a ∈ A}.

Parallel execution of two interacting LTSs defined
in alphabets A ⊆ L and B ⊆ L is an execution where
transitions by opposite actions z and , where z ∈ A

and  ∈ B, are executed synchronously, i.e., simulta�
neously in both LTSs, such that, in the composition,
this becomes a τ�transition. The other transitions are
executed asynchronously, i.e., in one of the LTSs,
while preserving the state of another LTS. This corre�
sponds to the definition of parallel composition in
CLS (Calculus of Communicating Systems) [9].

For alphabets A ⊆ L and B ⊆ L, we define compo�

sition of the alphabets as follows: A  B  (A\ ) ∪
(B\ ). Composition of two LTSs I = LTS(VI, A, EI, i0)
and T = LTS(VT, B, ET, t0) is defined as the LTS S =
LTS(VI × VT, A  B, ES, i0t0), where ES is the least set
generated by the following inference rules: ∀z ∀i ∈ VI

∀t ∈ VT,

(1) z ∈ (A ∪ {τ})\  & i  i ' � it  i 't,

(2) z ∈ (B ∪ {τ})\  & t  t ' � it  i 't,

(3) z ∈ A ∩  & i  i ' & t  t ' � it  i 't '.

Note that, in parallel composition in CSP [5], a
synchronous transition corresponds to a pair of transi�
tions in the LTS operands by one and the same symbol.
Therefore, after the composition, an additional appli�
cation of operator Hide [13] is required, which turns
such compositional transitions into τ�transitions.

2.5. Testing and Test Generation for ioco

Testing is meant to be parallel execution of the LTS
implementation in alphabet L ⊆ L and LTS test. The
test plays role of the implementation environment;
therefore, it is defined in the opposite alphabet . The
composition of the implementation and test contains
only τ�transitions, and parallel execution of the imple�
mentation and test is execution of the chain of τ�tran�
sitions in their composition. To observe a refusal δ aris�
ing in the implementation, a special τ�transition is
introduced in the LTS test. It is designed for resolving
deadlocks: in the composition of the implementation
and test, it is executed as a τ�transition if and only if all
other transitions are impossible. Symbol θ is added to
the test alphabet. In the definition of the composition
of LTS implementation I = LTS(VI, L, EI, i0) and LTS
test T = LTS(VT,  ∪ {θ}, ET, t0), the following fourth
rule is added: ∀i ⊆ VI ∀t ∈ VT,

(4) i  & t  & (∀z ∈ L i  ∨ t )

& t  t ' � it  it '.
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An LTS test must contain only two terminal states,
which correspond to verdicts pass and fail. Testing ter�
minates when the composition of the implementation
and test occurs in the terminal state it. If the test state
t is terminal (a verdict is rendered), then the composi�
tional state is also terminal. In order that the converse
be true (i.e., testing always terminates with a verdict),
it is required that, for each terminal state it of the com�
position, the state t of the test be terminal. A deadlock
does not arise in a composition if the test state is unsta�
ble or at least one transition by stimulus sending (i.e.,
by a symbol , where x ∈ X) is defined in it, since the
implementation is everywhere defined by stimuli.
In the ioco semantics, in addition to the external
actions, only refusal δ is observable. Therefore, in
order that a test could be applied to any implementa�
tion in alphabet L, we require that, in any reachable
nonterminal stable state t of the test that has no transi�
tions by stimulus sending, transitions by receipt of all
reactions from the implementation and the θ�transi�
tion be defined:

∀t ∈ der(T) ∀u ∈  ∪ {τ, θ} t  ∨∃x ∈  ∪ {τ} t

∨ ∀y ∈  ∪ {θ} t  .

In order that testing always terminate in a finite
time, the composition of the implementation and test
should not contain infinite chains of transitions. In
order that this hold for any implementation in alpha�
bet L, all transition chains in the test must be finite (in
particular, the test must be strictly convergent). In
other words, the graph of the LTS test is a finite acyclic
graph the sinks of which are states corresponding to
verdicts pass and fail.

Under the above�specified restrictions on the test,
the implementation passes the test if, for any reachable
terminal state it, the state t in the composition of the
implementation and the test is associated with verdict
pass. The implementation passes a set of tests if it
passes each test from the set. A test set is said to be
sound if any conformal implementation passes it. A set
of tests is exhaustive if any nonconformal implementa�
tion does not pass it. A set of tests is complete if it is
sound and exhaustive.

Usually, tests are additionally required to satisfy the
constraint of lack of “redundant indeterminism”: in
each reachable nonterminal state t, either one stimu�

lus is sent (∃x ∈  t  & ∀u ≠ x t ) or all reactions

are received and refusal δ is detected: ∀y ∈  ∪ {θ}

t  & ∀u ∈  ∪ {τ} t . Under these constraints, a
complete set of tests exists, while they do not reduce
testing power.

In particular, a set of all primitive tests is complete.
Such a test is constructed by one nonempty S�trace σ
of specification S. States of an LTS test are prefixes of
the S�trace σ different from the trace itself and some
their extensions by one symbol; the initial state is an

x

L u
– X x

Y y

X x u
–

Y
y X u

–

empty S�trace; and transitions are defined by the fol�
lowing inference rules: ∀i = 1…n, where n is the length
of trace σ, ∀z ∈ Yδ,

i < n � σ[1…i – 1]  σ[1…i],
σ(i) ∈ Yδ & σ[1…i] . 〈z〉 ∈ Straces(S) &

& (z ≠ σ(i) ∨ i = n) � σ[1…i – 1]  pass,
σ(i) ∈ Yδ & σ[1…i] . 〈z〉 ∉ Straces(S)

� σ[1…i – 1]  fail,
where σ[1…j] is a prefix of the S�trace σ containing the

first j symbols and   θ.

3. PROBLEMS RELATED
TO THE IOCO RELATION

There are four basic problems associated with the
ioco relation: (1) conformance nonreflexivity, (2) non�
conformal S�traces of the specification, (3) conform�
ance nonmonotonicity (under which we mean non�
conservation of conformance upon composition), and
(4) nonconservation of conformance when testing in a
context.

3.1. Nonreflexivity of ioco

Since the implementation must be everywhere
defined by stimuli and the specification in some states
may block (not receive) certain stimuli, such a specifi�
cation is nonconformal to itself with respect to ioco by
definition. Nonreflexivity means that the specification
cannot be understood as an implementation confor�
mal to it. This is supposed to be a disadvantage because
contradicts an intuitive idea of a specification as a set
of requirements that can be implemented “as is.” Such
a specification cannot be used as a prototype of an
implementation: if we write the implementation as an
explicit expression of the specification, then we obtain
a nonconformal implementation.

3.2. Nonconformal S�traces of Specifications

A conformal S�trace (for specification S) is an
S�trace that is available in at least one conformal
implementation. In the nonreflexivity problem, we
separate a special case where the specification S itself
contains nonconformal S�traces.

Consider an example of two specifications S1 and
S2 shown in Fig. 1. In specification S1, the stimulus is
blocked in state 4 after S�trace . Since imple�
mentations are everywhere defined by stimuli, in any
implementation containing the S�trace , this
S�trace can be extended by stimulus x. If an imple�
mentation contains S�trace , then it also
contains S�traces , , and .
These three S�traces are available in the specification,

σ(i)�

z�

z�

δ =
Δ

1

1

1

1

δ x δ, ,〈 〉

δ x δ, ,〈 〉

δ x δ x, , ,〈 〉
δ x x, ,〈 〉 x δ x, ,〈 〉 x x,〈 〉
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and each of them can be extended in the specification
only by reaction a. Moreover, all these three S�traces
in the set of S�traces of the specification are extended
by the same traces (to state 7). In order to obtain an
LTS completion  that is equivalent and conformal
to specification S1, it is sufficient to add transition

4  7 to the specification.
Similarly, for specification S2, the implementation

containing the S�trace  contains also S�traces
, , , and . The last

three S�traces are also available in specification S2 and
are extended in it by only reactions a, only reactions b,
and both reactions a and b, respectively. Thus, in con�
trast to specification S1, after these three S�traces,
there is no common observation upon receiving reac�
tions by the test (common reaction or δ). Hence, the
S�trace  cannot be met in a conformal imple�
mentation. In order to obtain an LTS completion that
is equivalent and conformal to specification S2, it is
required to delete the nonconformal S�trace 

(for example, by deleting transition 0  1) rather
than to add S�traces like in the case of specification S1.

The presence of “redundant” nonconformal
S�traces in a specification is not good because they
generate extra tests (in particular, they result in gener�
ation of primitive tests). Consider specifications S3

and S4 in Fig. 2, which are modifications of specifica�

S1'

x

δ x δ, ,〈 〉
δ x δ x, , ,〈 〉 δ x x, ,〈 〉 x δ x, ,〈 〉 x x,〈 〉

δ x δ, ,〈 〉

δ x δ, ,〈 〉
τ

tions S1 and S2 from Fig. 1: in order to avoid refusal δ
in state 5, instead of the transition by action a, the
τ�transition is used. In specification S3, like in S1, all
S�traces are conformal, and, to complete the specifi�

cation, it is sufficient to add transition 4  7.
In specification S4, like in S2, the S�trace  is
not conformal. However, unlike in the case of S2, the
conformance requires that, after the S�trace ,
there were no reactions a and b. Hence, a conformal
implementation cannot contain the S�trace .
If a conformal implementation contained S�trace

, it would contain a nonconformal S�trace 
as well, since the implementation is everywhere
defined by stimuli. Hence, a conformal implementa�
tion does not contain S�trace . To complete specifi�
cation S4, it is required to delete the nonconformal S�

trace  by deleting, for example, transitions 0  1

and 0  2.

The example in Fig. 3 is even more amazing. Spec�
ifications S5 and S6 are modifications of specifications
S3 and S4 from Fig. 2: in order to avoid refusal δ in state 3,
instead of the transition by action b, the τ�transition is
used. In specification S5, like in S3, all S�traces are
conformal, and, to complete the specification, it is

sufficient to add transition 4  7. In specification S6,
like in S4, the S�trace  is not conformal. However,

x

δ x δ, ,〈 〉

δ x,〈 〉

δ x,〈 〉

δ〈 〉 δ x,〈 〉

δ〈 〉

δ〈 〉 τ

τ

x

δ〈 〉
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τ
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8
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Fig. 1. S�trace  is conformal on the left and is nonconformal on the right.δ x δ, ,〈 〉
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unlike in the case of S4, the conformance requires that,
after an empty S�trace, there were no reactions a and
b as well. Hence, a conformal implementation cannot
contain an empty S�trace. Since any implementation
contains an empty S�trace, there are no conformal
implementations for specification S6. All S�traces of
specification S6 are nonconformal.

These examples demonstrate how useful analysis of
nonconformal S�traces can be. The complete set of
primitive tests for specifications S1–S6 is infinite, since
the number of S�traces is infinite (owing to the loop in
state 7). Hence, complete testing is endless in the gen�
eral case. Testing for specification S4 can be termi�
nated with verdict fail immediately after obtaining
S�trace . Hence, there is no need to generate tests
by all extensions of the S�trace  (the number of
which is infinite) available in the specification. That is,
we delete an infinite number of tests from the complete
set. For specification S6, testing is not required at all.

3.3. Nonmonotonicity of ioco

Conformance is said to be monotone with respect to
composition of LTSs if composition of implementa�
tions that are conformal to their specifications is con�
formal to the composition of these specifications.
Monotonicity is an important property: if conform�
ance is monotone, to check “correctness” of a com�
pound compositional system, it is sufficient to verify
conformance of the system components to their spec�
ifications. In this case, the system turns out conformal
to the composition of the component specifications,
which may be viewed as a specification of the system.
If a specification of the system is given, then we can
verify decomposition of system requirements, i.e.,
check conformance of the system specification and
specifications of its components. To this end, it is suf�
ficient to check that the composition of the compo�
nent specifications is conformal to the available sys�
tem specification. Composition of the component
specifications is the strongest specification (i.e., one
that imposes maximal requirements) among all speci�
fications conformal to the component specifications
[1, 2].

δ〈 〉
δ〈 〉

Unfortunately, the ioco relation is not monotone
[1, 2, 13, 14]. An example is presented in Fig. 4. Here, in
the composition of conformal implementations IA  IB,
there is an observation δ in the very beginning (after
empty S�trace), whereas this is not true for the compo�
sition of the specifications SA  SB.

3.4. Nonconservation of ioco upon Testing in a Context

A special case of nonconservation of the ioco rela�
tion is testing in a context [11, 13, 14], when the test
and implementation interact through an intermediate
environment (context) rather than directly. Testing in a
context may be viewed as testing of a system consisting
of two components, one of which is the implementa�
tion and another is a fixed context. In contrast to the
general case of composition, it is assumed that the
context is known, has no errors, and does not need
testing. The conformance nonconservation problem
consists in that testing in a context can detect “false”
errors, which are not detected when the test interacts
with the implementation directly, without a context.

Figure 5 shows an example for implementation I
and specification S (in alphabet A) and context Qx (in
alphabet B), which is an unbounded queue of stimuli.
Since the queue accumulates stimuli sent to the imple�
mentation, there appears an opportunity to send two
stimuli x one after another when testing by specifica�
tion S (composition of the specification with the con�
text is everywhere defined by stimuli). If reactions are
received after this, then, according to specification S,
two reactions y are to be successively observed. At the
same time, although implementation I is conformal, a
“false” error will be detected when testing in a context:
the implementation may first receive two stimuli x,
then produce only one reaction y, after which δ is
observed.

4. SPECIFICATION COMPLETION

Solutions of the four basic problems of the ioco
relation mentioned in the previous section can be
sought based on the specification equivalence. Two

X = {x}, Y = {a, b}

S5

τ

τ

τ

0 2 5 7

1 4

3 6

τ
a

δ δ

δ

x

x

x
x

x

x

S6

τ

τ

τ

0 2 5 7

1 4

3 6

τ

τ
a

δ δ

δ

x

x

x x

x

x

x b

8

δ
τ

δ

Fig. 3. All S�traces on the left are conformal and all S�traces on the right are not conformal.
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specifications S and S ' are equivalent if they define one
and the same class of conformal implementations:

S ~ioco S '  {I |I ioco S} = {I |I ioco S '}.

Completion is a transformation C that, for each
specification S, constructs an equivalent specification
C(S) for which these four problems of the ioco relation
do not come to existence.

These transformations were proposed by the
authors of this paper for the conformance relation
iocoβγδ in [1] and, for a wider class of conformances
saco, in [2]. Here, we optimize these transformations
for the ioco relation, in particular, for the case where
the specification is finite (finite number of transitions)
and the transformation can be performed algorithmi�
cally for a finite time. Relation iocoβγδ admits observa�
tion of not only absence of reactions δ but also of stim�
ulus blocking. Therefore, the domain of iocoβγδ is wider
than that of ioco. However, on the class LTS2 of every�
where defined by stimuli specifications, these relations
coincide [1, Section 2.5.3, Definition of the ioco rela�

=
Δ

tion]. Therefore, the results obtained in [1] are valid
for the ioco relation if specifications are confined to
class LTS2.

Nonreflexivity of ioco and nonconformal S�traces of
specifications. On class LTS2, the iocoβγδ relation is
equivalent to the S�trace nesting: ∀L ⊆ L ∀I, S ∈
LTS2(L) I iosoβγδS = Straces(I) ⊆ Straces(S) [1, Sec�
tion 2.2.7, Proposition 24]. Hence, on the class of
specifications LTS2, the ioco relation is also equivalent
to the S�trace nesting (see also [14, Lemma A4]).
Then, it immediately follows that, on the class of spec�
ifications LTS2, the ioco relation is reflexive. As a
result, all S�traces of such specifications are confor�
mal. Therefore, it makes sense to seek completion of
specifications in class LTS2.

Nonmonotinicity of ioco. The ioco relation assumes
strict convergence of the specifications (class LTS1)
and that the implementations are everywhere defined
by stimuli (class LTS2).

1

alphabets implementations specifications conformance

IA SA

IB = SB

0 1 0 1

0 1

00 1000 10 10

x

y y

yy

x

τ

τ

IA ioco SA

IB ioco SB

IA  IB ioco SA  SB
SA  SBIA  IB

x

A = XA ∪ YA

XA = {x}

YA = {y}

B = XB ∪ YB

XB = ∅

YB = {x}

XA  B = ∅

YA  B = {y}

Fig. 4. Nonmonotonicity of the ioco relation.

alphabets implementations specifications conformance

I S

Qx

0 1 0 1

x

y y
I ioco S

x

A = XA ∪ YA,

XA = {x}, YA = {y}

B = XB ∪ YB,

XB = {x}, YB = {x}

XA  B = {x}, YA  B = {y}

x

I  Qx ioco S  Qx

Fig. 5. Nonconservation of ioco in testing in a context.
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Composition of everywhere defined by stimuli
LTSs is also everywhere defined by stimuli. Indeed,
consider composition I  T, where I ∈ LTS2(A) and
T ∈ LTS2(B). By the composition rules, stability of the
compositional state it implies that states i and t in the
LTS operands I and T, respectively, are stable. There�
fore, for each stimulus x ∈ XA\ , from the fact that
LTS I is everywhere defined by stimuli it follows that

i , which implies it . Similarly, for each stimulus
x ∈ XB\ , from the fact that LTS T is everywhere

defined by stimuli, it follows that t , which implies

it .
However, composition of strictly convergent LTSs

may not occur strictly convergent. For example, let I ∈
LTS2(A) and T ∈ LTS2(B), and suppose that, for z ∈ XA ∩

, there are loop transitions i  i in I and t  t in T.

Then, there is a loop τ�transition it  it in composi�
tion I  T; i.e., state it is divergent, and, if it is reach�
able, the composition is not strictly divergent.

Therefore, conformance monotonicity is meant in
the following conditional sense: if composition of
specifications S1  S2 and composition of implementa�
tions I1  I2 that are ioco�conformal to them are strictly
convergent, then I1  I2 ioco S1  S2. If this specifica�
tion holds on some class of specifications, then this
property is referred to as conditional monotonicity of
the ioco relation on this class of specifications. Condi�
tional monotonicity of ioco on class LTS2 was proved

in [14, Theorem 9].
1

However, while strict convergence of the specifica�
tion composition can be verified (since the specifica�
tions are explicitly defined), the LTS models of the
implementations may be unknown, and verification of
strict convergence of the composition of the imple�
mentations may occur problematic. Therefore, it is
important to determine additional restrictions on the
specifications under fulfillment of which strict conver�
gence of the specification composition implies strict
convergence of the composition of the implementa�
tions. These restrictions determine a subclass of class
LTS2. In [14], this problem was not solved. Uncondi�
tional monotonicity of the ioco relation on such a sub�
class of specifications is defined to be the following
property: if composition of specifications S1  S2 from
the given subclass is strictly convergent, then compo�
sition of the ioco�conformal implementations I1  I2 is
also strictly convergent and I1  I2 ioco S1  S2.

We will show that, for such a subclass of specifica�
tions, we can take the subclass of class LTS2 consisting
of locally finitely branching LTSs [1, 2]. The latter are

1 In [14], the CSP composition with operator Hide, rather than
the CCS composition of LTSs, is used.

YB

x x

YA

x

x

YB
z z�

τ

LTSs in each reachable state of which a finite number
of transitions by each stimulus, including τ, are
defined. The class of such LTSs is denoted by LTS3.
It is proved in [1, Section 4.3.1, Proposition 116] that,
on class LTS3, strict convergence of specification
composition S1  S2 implies strict convergence of com�
position of iocoβγδ�conformal implementations I1  I2

and monotonicity of relation iocoβγδ: I1  I2 iocoβγδ S1 
S2. Since LTS3 ⊆ LTS2, this assertion is true for the
ioco relation as well.

Nonconservation of ioco when testing in a context.
Similar results are obtained when context Q belongs to
the class of implementations LTS2.

Conditional conservation of ioco. On the class of
specifications LTS2, under the condition of strict con�
vergence of both composition of specifications with a
context and composition of ioco�conformal imple�
mentations with the context, the ioco relation is con�
served upon testing in a context. Indeed, by [14,
Lemma A.4], on the class of specifications LTS2, ioco
is equivalent to the S�trace nesting and, hence, is
reflexive: Q ioco Q. Hence, it follows from [14, Theo�
rem 9] that I  Q ioco S  Q.

Unconditional conservation of ioco. It is proved in
[1, Section 4.3.1, Proposition 116] that, on the class of
specifications LTS3, strict convergence of composi�
tion of specifications with context S  Q implies strict
convergence of composition of the iocoβγδ�conformal
specification with the context I  Q and conservation
of the iocoβγδ relation upon testing in context: I  Q
iocoβγδ S  Q. Since LTS3 ⊆ LTS2, this assertion is also
true for the ioco relation.

Solution of the problem of the ioco nonconservation
upon testing in a general context (from class LTS rather
than from class LTS2) is considered in Section 6.

In the next subsections, we define transformation
C: LTS1  LTS3 and show that, for a finite specifica�
tion, completion can be performed algorithmically in
a finite time.

In the course of completion, first of all, we will get
rid of stimulus blockings in the specifications. If there
are S�traces in S that are not extended by certain stim�
uli, C(S) should not possess this property. However,
not all S�traces of this kind are preserved upon com�
pletion (with addition of lacking stimuli after them);
i.e., the relation Straces(S) ⊆ Straces(C(S)) does not
necessarily hold. If specification S contains noncon�
formal S�traces, they are deleted (of course, with all
their extensions). We define completion C as succes�
sive execution of two transformations. First, we get rid
of stimulus blockings (transformation B); then, non�
conformal S�traces are deleted (transformation D).

4.1. Transformation B

To get rid of stimulus blockings, we have to add
“new” S�traces as extensions of the “old” S�traces
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(which were available in the original specification) by
those stimuli that were not used for extending traces in
the original specification. These new traces should
also be extended by stimuli and so on. Simultaneously,
each added trace has to be extended by reactions
and/or stationarity such that this extension does not
change conformance. If this is impossible, the trace is
announced to be nonconformal.

If an S�trace σ is added from which the “old”
S�traces can be obtained by deleting certain occur�
rences of refusal δ, then requirements to the imple�
mentation imposed by the specification are deter�
mined based on just these “old” traces. If there are no
“old” traces, the specification does not impose any
requirements to the implementation after trace σ.

Let us formally define set d(σ) of the S�traces
obtained from σ by deleting symbols δ as the least set
of the S�traces generated by the following inference
rules: ∀σ, μ, λ,

� σ ∈ d(σ),

μ ⋅  ⋅ λ ∈ d(σ) � μ ⋅ λ ∈ d(σ).

A completed LTS specification B(S) is defined in
[1] as a specification the states of which are S�traces
(both “old” and “new” ones) and transitions have the

form σ  σ ⋅ , where z ∈ L and σ  σ ⋅ .
The number of such S�traces in the general case is infi�
nite even if we confine ourselves (from practical con�
siderations) to only finite LTS specifications (with a
finite number of transitions). On the other hand, when
constructing states of the LTS B(S), we may not distin�
guish the S�traces terminating in one and the same set
of states in S, since they have identical extensions.
Therefore, a state of the LTS B(S) may correspond to
a set σ0 after σ of states of the LTS S rather than to the
S�trace σ. However, this can be done only for the
“old” S�traces σ ∈ Straces(S). We use another
approach, which is suitable for both “old” and “new”
S�traces, defining a state of the LTS B(S) to be family
P(σ) of sets of states of the LTS S after all “old” traces
from d(σ). State P(σ) will be one of the states of B(S)
where the S�trace terminates. Formally,

Note that all sets of states contained in family P(σ)
are not empty (as sets of states after the S�traces avail�
able in the LTS): ∀p ∈ P(σ) p ≠ ∅, in particular, P(σ)
≠ {∅}. The family P(σ) itself is not empty if and only if
d(σ) ∩ Srtaces(S) ≠ ∅. Empty set P(σ) corresponds to
all those “new” S�traces σ after which the specifica�
tion does not impose any requirements to the imple�
mentation.

First, consider the case P(σ) ≠ ∅, i.e., d(σ) ∩
Straces(S) ≠ ∅.

The S�trace σ is extended in B(S) by reaction y ∈ Y if
and only if each “old” S�trace σ' ∈ d(σ) ∩ Straces(S) is
also extended by this reaction in Straces(S). If this
were not the case in the original specification S (i.e., if

δ〈 〉

z z〈 〉 τ δ〈 〉

P σ( ) s0 after σ ' = ∅ σ ' d σ( )∈ Straces S( )∩{ }.=

∃σ' ∈ d(σ) ∩ Straces(S)σ' ⋅  ∉ Straces(S)), we
would weaken conformance by adding S�trace σ ⋅ 
and, hence, by also adding S�trace σ ⋅ : after S�trace
σ', reaction y would be forbidden, whereas, now, it is

permitted. Therefore, transition P(σ)  P(σ ⋅ ) is
performed in the only case where ∀σ' ∈ d(σ) ∩
Straces(S)σ' ⋅  ∈ Straces(S). Note that, in this
case, P(σ ⋅ ) ≠ ∅.

Similarly, S�trace σ is extended in B(S) by refusal δ
only if each “old” S�trace σ' ∈ d(s) ∪ Straces(S)is also
extended by δ in Straces(S). If this were not the case in
the original specification S (i.e., if ∃σ' ∈ d(σ) ∩
Straces(S) σ' ⋅  ∉ Straces(S)), we would weaken
conformance by adding S�trace σ ⋅  and, hence, by
also adding S�trace σ' ⋅  : after S�trace σ', observa�
tion δ would be forbidden, whereas, now, it is permit�
ted. Since transition by δ in the LTS is virtual, instead

of transition P(σ)  P(σ ⋅ ), we perform transi�

tion P(σ)  P(σ ⋅ ) if and only if ∀σ' ∈ d(σ) ∩
Straces(S) σ' ⋅  ∈ Straces(S) and P(σ) ≠ P(σ ⋅ ).
In state P(σ ⋅ ), transitions by reactions and
τ�transitions are not carried out; i.e., this is a station�
ary state. Note that, in this case, P(σ ⋅ ) ≠ ∅.

Since B(S) must be everywhere defined by stimuli,
in each state P(σ) and for each stimulus x ∈ X, transi�

tion P(σ)  P(σ ⋅ ) is performed.

Now, it may occur that P(σ ⋅ ) = ∅; i.e., each
S�trace σ' ∈ d(σ) ∩ Straces(S) cannot be extended in
S by stimulus x. This means that, after each such an
S�trace σ', specification S does not impose any con�
straints on the implementation, admitting chaotic
behavior (i.e., permitting any possible S�traces). Then,
in B(S) after S�trace σ (i.e., in state ∅), we should also
permit chaotic behavior. A state s in which chaotic

behavior is permitted is called demonic: ∀σ ∈ , s .
Demonic state ∅ can be implemented as shown in Fig. 6.

A difficulty arises when a “new” S�trace σ is
obtained (as an extension of an “old” nonconformal
S�trace) in the course of transformation B that cannot
be extended by a reaction or refusal δ without chang�
ing conformance. Such an S�state is associated with
stable state P(σ). In this state, we should not define
(without changing conformance) transitions by reac�
tions; at the same time, this state should not be sta�
tionary. Such a state is called a nonconformal state.
To formally express nonconformance of a state, we
define in it a loop transition by special fictitious reac�
tion error ∈ Y. This reaction is added to the alphabet of
the LTS B(S).

Let us define transformation B(S) in strict terms.
Let an alphabet of stimuli and reactions L = X ∪ Y,

y〈 〉
y〈 〉

y〈 〉

y y〈 〉

y〈 〉
y〈 〉

δ〈 〉
δ〈 〉

δ〈 〉

δ δ〈 〉
τ δ〈 〉

δ〈 〉 δ〈 〉
δ〈 〉

δ〈 〉

x x〈 〉

x〈 〉

Lδ
* ⇒

σ
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where X ⊆ X, Y ⊆ Y, and specification S = LTS(V, L,
E, s0) be given.

For family P of sets of states, we define operator
after in such a way that, for any S�trace σ such that
P(σ) = P and any observation u, the following equality
holds: P(σ ⋅ ) = P after u. For z ∈ L, p ∈ �(�), and
� ∈ �(�(�)), we have

p after z  ∪{s after |s ∈ p},

P after z  {p after z ≠ ∅|p ∈ P},

p after δ  ∪{s after |s ∈ p},

P after δ  P ∪ {p after z ≠ ∅|p ∈ P}.
Note that (P (after σ) after σ = P after δ, ∅ after 

z = ∅ after δ = ∅) always holds.

Then, B(S)  LTS(V1, L1, E1, s1), where V1 =
�(�(�)), L1 = L ∪ {error}, error ∈ Y \Y, s1 = {s0 after �},
and E1 is the least set generated by the following infer�
ence rules: ∀P ∈ V1, ∀x ∈ X, and ∀y ∈ Y,

(1) P ≠ ∅ & ∀p ∈ P p after y ≠ ∅

� P  P after y,
(2) P ≠ ∅ ∀p ∈ P p after δ ≠ ∅ &

& P ≠ P after δ � P  P after δ,

(3) P ≠ ∅ & P conf � P  P after x,

(4) P ≠ ∅ & ¬(P conf) � P  P,

(5)  � ∅  ∅,

(6) � ∅  {∅},

(7) � {∅}  ∅,

where P conf  ∃u ∈ Yδ ∀p ∈ P p after u ≠ ∅.

4.2. Transformation D

On the second stage, we get rid of nonconformal
S�traces in the LTS B(S). First of all, the nonconfor�
mal S�traces are those that terminate in the noncon�

formal state P in which transition P  P was defined
according to the fourth inference rule for B.

Next, any state P for which at least one of the fol�
lowing three conditions holds is declared to be non�
conformal:

u〈 〉

=
Δ

z〈 〉

=
Δ

=
Δ

δ〈 〉

=
Δ

δ〈 〉

=
Δ

y

τ

x

error

y

τ

x

=
Δ

error

(1) State P is stable, and a transition by stimulus
P  P ' leading to a nonconformal state P ' is defined
in it. Since not more than one transition by stimulus is
defined in each state of the LTS B(S), after deletion of
transition P  P ', there arises blocking of stimulus x
in state P.

(2) State P is stable, at least one transition by reac�
tion is defined in it, and all transitions by reactions in
state P lead to nonconformal states. After deletion of
all transitions by reactions from state P, there arises
refusal δ in this state, which was lacking before this
(conformance nonconservation).

(3) In state P, transitions by reactions are not
defined, but there is τ�transition P  P ' leading to a
nonconformal state P '. Since not more than one
τ�transition is defined in each state of the LTS B(S),
after deletion of transition P  P ', there arises
refusal δ in state P; therefore, the S�traces terminating
in state P are nonconformally extended by refusal δ, as
it was before.

This procedure of declaring nonconformal states is
repeated until it is possible. Formally, the set W(B(S))
of nonconformal states of the LTS B(S) = LTS(V1, L1,
E1, s1) is the minimal set generated by the following
inference rules: ∀P ∈ VS1,

P  P � P ∈ W(B(S)),

P   & ∃x ∈ X ∃P ' P  P ' & P ' ∈ W(B(S))
 � P ∈ W(B(S)),

P   & ∃y ∈ Y P 

& ∀y ∈ Y ∀P ' (P  P ' ⇒ P ' ∈ W(B(S))
 � P ∈ W(B(S)),

∀y ∈ Y P   & ∃P' P  P ' & P ' ∈ W(B(S))
 � P ∈ W(B(S)).

If it turned out that s1 ∈ W(B(S)), then all S�traces
of the LTS B(S) are nonconformal. Such a specifica�
tion has no conformal implementations.

Otherwise, we delete from the LTS B(S) all non�
conformal states and all transitions beginning or ter�
minating in such states.

4.3. Transformation C

Let us define the final completion as

C(S)  D(B(S))  LTS(V2, L2, E2, s2),
where V2 = V1(B(S)), L2 = L1\{error} = L, s2 = s1 = {s0

after �}, E2 = {(P, u, P ') ∈ E1|P ∈ V2 & P ' ∈ V2}.
By construction, LTS C(S) is strictly convergent,

everywhere defined by stimuli, and locally finitely
branching, i.e., belongs to class LTS3. It is proved in
[1, Proposition 50] that it is ioco�equivalent to S,
C(S) ~ioco S. A similar assertion is proved in [2, Theo�
rem 22]. As noted above (by [1, Section 4.3.1, Propo�
sition 116]), based on this, all four above�specified

x

x

τ

τ

error

τ
–

x

τ
–

y

y

y
–

τ

=
Δ

=
Δ

y

x

τ
∅ {∅}

∀y∈Y

Fig. 6. Demonic state ∅.
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problems of the ioco relation are solved on the class of
completed specifications. Monotonicity is meant as
unconditional monotonicity, and, to preserve con�
formance when testing in a context, it is assumed that
the context belongs to LTS2.

If an LTS specification is finite (the number of
transitions is finite), then the completed specification
C(S) is finite if there is no need in a demonic state, i.e.,
inference rules 5–7 are not applied. Obviously, trans�
formation C in this case is carried out algorithmically
for a finite time. The implementation of a demonic
state is finite if and only if the alphabet is finite, since,
in state ∅, transitions by all reactions are defined
(inference rule 5) and, in state {∅}, transitions by all
stimuli are defined (inference rule 7). Therefore, if a
demonic state is available, transformation C is carried
out algorithmically for a finite time only for a finite
alphabet. For finite LTSs, their composition is finite
and is carried out algorithmically for a finite time. Ver�
ification of strict convergence for a finite LTS is also
performed for a finite time (it is checked whether
τ�loops are absent).

5. EXAMPLES OF SPECIFICATION 
COMPLETION

Consider completions of the specifications from
the examples given in Section 3.

Resolving nonreflexivity problem of the ioco rela�
tion and problem of nonconformal S�traces in specifi�
cations. Figure 7 shows completions of specifications
S5 and S6 (Fig. 3). Nonconformal states are high�
lighted in grey.

Resolving problem of nonmonotonicity of the ioco
relation. Figure 8 shows completions of specifications
SA and SB (Fig. 4) and composition of the completed
specifications.

Resolving problem of conformance conservation
upon testing in a context from class LTS2. Figure 9
shows completions of specification S (Fig. 5).

1

6. TESTING IN A GENERAL CONTEXT

It was shown in the previous section that the ioco
relation for specifications from class LTS3 is certainly
conserved when testing in a context from class LTS2.
However, the requirement of being everywhere
defined by stimuli is violated for some practically
important contexts. For example, bounded queues of
stimuli and reactions can be treated as LTSs with stim�
ulus blocking (when the queue is full). Here, we con�
sider the case of unconditional conservation of ioco for
a general context and specifications from class LTS3 (in
particular, those obtained by means of completion C).

In order to apply ioco after composition, it is
required that composition I  Q of a conformal imple�
mentation I with a context Q belong to class LTS2 and
composition S  Q of specification S with the same
context Q, to class LTS1. Composition I  Q for a gen�
eral context Q (in contrast to the case of a context from
class LTS2) may contain stimulus blockings and, hence,
not to belong to class LTS2. Moreover, such an imple�
mentation always exists for a specification S ∈ LTS2 if
composition S  Q contains stimulus blockings: in
view of reflexivity of ioco, such an implementation is
the specification S itself. Therefore, for specifications
from some subclass of class LTS3, unconditional con�
servation of the relation means that, if S  Q ∈ LTS2,
then I  Q ∈ LTS2 and I  Q ioco S  Q .

In [1, Chapter 4.1], transformation Tβδ was sug�
gested to resolve problem of conservation of conform�
ance of iocoβγδ when testing in a general context (class
LTS). This transformation is applied to locally finitely
branching LTSs in an alphabet with a finite number of
reactions. Intersection of the class of such LTSs with
class LTS3 is denoted as LTS4.

Since relations iocoβγδ and ioco coincide on the
class of specifications LTS2 and LTS4 ⊆ LTS3 ⊆ LTS2,
we may take advantage of this transformation for the
ioco relation and specifications from class LTS4. Here,

C(S5) C(S6)

0123

456

456,46

7

0123,12 456,45 456,45,46,4
τ τx

x

x

x

x x

x, a

0123

456

456,46

0123,12 456,45 456,45,46,4

x

x

x

τ τx

τ τ
7

x, ax, b

x

x

a

a

x x
x

error
78,7,878,778

78,8

8

b

b

Fig. 7. Completion of specifications S5 and S6 (Fig. 3).
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we describe its modified variant—transformation T:
LTS4  LTS4—designed for specifications from
class LTS4, in which stimulus blockings are absent. For
LTS S ∈ LTS4, states of the LTS Tβδ(S) are constructed
based on the sets of states after the traces of the LTS S.
At the same time, as noted above, we may not distin�
guish traces that terminate in one and the same set of
states, since they have identical extensions. Therefore,
states of the LTS T(S) are constructed simply based on
the sets of the LTS S, not taking into account what
traces terminate in one or another set.

Let us define transformation T in strict terms. Let
an alphabet of stimuli and reactions L = X ∪ Y, where
X ⊆ Y and Y ⊆ Y, and specification S = LTS(V, L, E,
s0) ∈ LTS4 be given.

Then, T(S)  LTS(VT, L, ET, sT), where VT =
�(�) ∪ (�(�) × �), sT = {s0 after �}, and ET is the
least set generated by the following inference rules: 

∈ �(�) ∀§ ∈ � � ∀† ∈ �,

(1) p after x ≠ ∅ p after x;

(2) p after y ≠ ∅ (p, y)  p after y

(3) p after x ≠ ∅ & p after y ≠ ∅

=
Δ

x

τ y

 � (p, y)  p after x;
(4) p after δ ≠ ∅ & p after δ ≠ p

 p after δ.
By construction, for S ∈ LTS4, we have T(S) ∈

LTS4.
First, let us prove invariance of ioco under transfor�

mation T: ∀S ∈ LTS4, T(S) ~ioco S.
Indeed, by [1, Section 4.1.2, Proposition 97],

Tβδ(S) iocoβγδ S & S ' iocoβγδ Tβδ(S), which, for S ∈
LTS4, is equivalent to T(S) iosoβγδ S & S iocoβγδ T(S).
By virtue of transitivity of relation iocoβγδ [1, Section
2.2.7, Proposition 20], this implies ∀I ∈ LTS I iocoβγδ
S ⇔ I iocoβγδ T(S). For S ∈ LTS4, we have T(S) ∈
LTS4. Since relations iocoβγδ and ioco coincide on the
class of specifications LTS4 ⊆ LTS2, we have ∀I ∈ LTS
I ioco S ⇔ I ioco T(S), which implies that T(S) ~ioco S.

Now, let us prove unconditional conservation of
ioco when testing in a general context for T�trans�
formed specifications:
∀I ∈ LTS2 ∀S ∈ LTS4 ∀Q ∈ LTS I ioco S

& T(S)  Q ∈ LTS2 ⇒ I  Q ioco T(S)  Q.
Indeed, since relations iocoβγδ and ioco coincide on

the class of specifications LTS4 ⊆ LTS2, I ioco S

x

τ

alphabets implementations specifications conformance

IA

SA

IB = SB = C(SB)

0 1

0 1

0 1

00 10

x

y

y

y

x

τ

x

IA ioco SA

IA ioco C(SA)

IB ioco SB

IB ioco C(SB)

IA  IB ioco SA  SB

IA  IB ioco C(SA)  C(SB)

00 10 10

y

τ

SA  SB

IA  IB

A = XA ∪ YA

XA = {x}

YA = {y}

B = XB ∪ YB

XB = ∅

YB = {x}

XA  B = ∅

YA  B = {y}
C(SA)  C(SB) 00 10

y

τ τ

∅1 {∅}1
τ

y

Fig. 8. Completion of specifications SA and SB (Fig. 4).
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implies I iocoβγδ S. By [1, Section 4.1.2, Proposition
97], this implies I  Q iocoβγδ Tβδ(S)  Q, which, for
S ∈ LTS4, is equivalent to I  Q iocoβγδ T(S)  Q. Since
relations iocoβγδ and ioco coincide on the class of spec�
ifications LTS2, we have T(S)  Q Œ LTS2.

The final transformation of completion for testing
in a general context is performed as successive trans�
formations C and T for any strictly convergent LTS
specifications in an alphabet with a finite number of
reactions.

If an LTS specification S is finite (has finite number
of transitions), then specification T(S) is finite. Obvi�
ously, in this case, transformation T is performed algo�
rithmically for a finite time. Composition of a finite
LTS specification with the context is finite and can be
performed algorithmically for a finite time if the LTS
of the context is finite. For a finite composition, strict
convergence and the property of being everywhere
defined by stimuli are verified for a finite time.

7. CONCLUSIONS

In the paper, transformation C of completion of
LTS specifications for ioco conformance is suggested.
The completed specification is equivalent to the origi�
nal specification in the sense of conservation of the
class of conformal implementations; i.e., the ioco rela�
tion is invariant with respect to completion. Transfor�
mation C resolves problem of the ioco reflexivity and
deletes nonconformal S�traces from the original spec�
ification.

The problem of conformance monotonicity upon
composition has also been addressed: if composition
of completed specifications is strictly convergent, then

composition of any implementations conformal to
these specifications is conformal to it.

Transformation C solves also problem of conform�
ance nonconservation when testing in a context
(“false” errors): if the context and implementation are
everywhere defined by stimuli and composition of the
completed specification with the context is strictly
convergent, then composition of any conformal
implementation with this context is conformal to the
former composition.

For a finite LTS specification in a finite alphabet,
specification C(S) is finite, and transformation C is
algorithmically performed for a finite time. Composi�
tion of finite LTSs is finite and is algorithmically per�
formed for a finite time. Strict convergence test for a
composition is also performed for a finite time.

For a general context (where stimulus blockings are
allowed), transformation T is further applied to speci�
fication C(S). It preserves the class of conformal
implementations and, if the number of reactions in the
alphabet is finite, guarantees the following: if compo�
sition of specification T(C(S)) with the context is
strictly convergent and everywhere defined by stimuli,
then composition of any conformal implementation
with this context is conformal to it.

For a finite specification C(S) in an alphabet with a
finite number of reactions, specification T(C(S)) is
finite, and transformation T is algorithmically per�
formed for a finite time. Composition of a finite LTS
specification with a finite context is finite and is algo�
rithmically performed for a finite time. Check of strict
convergence and everywhere definiteness by stimuli
for a finite composition is algorithmically performed
for a finite time.

alphabets implementations specifications conformance

I

S

Qx

0 1

0 1

x

y

y
I ioco S

x

A = XA ∪ YA,

XA = {x}, YA = {y}

B = XB ∪ YB,

XB = {x, y}, YB = {y, x}

XA  B = {x}, YA  B = {y}

x

I  Qx ioco S  Qx

I ioco C(S)

x

τ
∅ {∅}

C(S) 0 1
y

x

x

y

I  Qx ioco C(S)  Qx

Fig. 9. Completion of specification S (Fig. 5).
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